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Abstract Secondarily treated municipal effluent has been
discharged since 2006 into a 1439 ha cypress-tupelo forested
wetland in coastal Louisiana. Changes in carbon stocks of
trees and soils as well as emissions of methane and nitrous
oxide were measured over a one-year period and compared to
baseline conditions derived from the scientific literature.
Methods and equations were applied from the American
Carbon Registry (ACR) wetland carbon offset methodology
‘Restoration of Degraded Deltaic Wetlands of the Mississippi
Delta’. The cumulative carbon sequestered in the Project sce-
nario was 4090 mt CO2e/y by trees and 13,752 mt CO2e/y by
soils, while 32,982 mt CO2e/y of greenhouse gasses were
emitted. The Baseline scenario sequestered 3790 mt CO2e/y
by trees and 2435 mt CO2e¢/y by soils while emitting 70,870
mt CO2e/y in greenhouse gasses. The net difference between
the Project and Baseline emissions was 11,617 mt CO2e/y if
greenhouse gasses were omitted and 49,505 mt CO2ely if
greenhouse gasses were included. This study demonstrates
the potential of using forested wetlands receiving treated mu-
nicipal effluent for the net sequestration of carbon.
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Introduction

Recognition that recent global climate change and se-
vere weather events have been exacerbated by human
activities (Oreskes 2004; Emanuel 2005; IPCC 2013)
has facilitated significant growth in emissions trading
programs, collectively referred to as carbon markets, in
order to stem emissions (Gillenwater et al. 2007).
Projects that sequester carbon and reduce greenhouse
gas emissions generate ‘carbon offsets’ that can be used
to compensate for an emission made elsewhere (Murray
et al. 2011). The carbon sequestered in vegetated coastal
ecosystems, specifically mangrove forests, seagrass
beds, and salt marshes, has been termed ‘blue carbon’
(Sifleet et al. 2011; Mcleod et al. 2011). In coastal
Louisiana, blue carbon also refers to carbon sequestered
in soils and trees of baldcypress (Taxodium distichum)
and water tupelo (Nyssa aquatica) forested wetlands, as
well as freshwater emergent, brackish and saltwater wet-
lands. Although their global area is one to two orders of
magnitude smaller than that of terrestrial forests, the
contribution of vegetated coastal habitats per unit area
to long-term C sequestration is much greater, with an
estimated 50% of the carbon in the atmosphere that
becomes bound or ‘sequestered’ in natural systems be-
ing cycled into coastal areas and oceans (Nellemann
et al. 2009; Mcleod et al. 2011).

Carbon finance has the potential to generate much needed
revenue to support wetland restoration and conservation
(Murray et al. 2011; Siikaméki et al. 2012; Mack et al.
2015). In 2012, the American Carbon Registry (ACR), a
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leading carbon market standard, certified the first wetland oft-
set methodology, which provided potential for carbon market
investment into wetland restoration projects (Mack et al.
2012). Deltaic wetlands are unique among coastal wetlands
in that they provide relatively permanent geologic storage of
carbon due to subsidence caused by the compaction of deltaic
sediments, with burial rates as high as 17 mm y ' in the
Mississippi River Delta (Shinkle and Dokka 2004; Tornqgvist
et al. 2008). Projects that increase vegetative productivity re-
sult in enhanced organic soil deposition, and geological sub-
sidence of this organic soil results in carbon burial (Bridgham
et al. 2006; Hansen and Nestlerode 2014). Critical research is
needed to determine the real world viability of wetland carbon
offset projects.

The majority of coastal forested wetlands in
Louisiana are degrading (Chambers et al. 2005), mostly
from the lack of seasonal inputs of freshwater, nutrients,
and sediments from the Mississippi River (Shaffer et al.
2009b; Conner et al. 2014; Shaffer et al. 2016). Flood
control levees built during the last two centuries have
separated the Mississippi River from its floodplain,
preventing seasonal flooding that would naturally occur
(Kesel 1988, 1989; Mossa 1996; Day et al. 2007). This
has caused saltwater intrusion, accretion deficits, and
prolonged flooding of most of the remaining forested
wetlands (Roberts 1997; Day et al. 2007; Shaffer et al.
2009a; Conner et al. 2014; Shaffer et al. 2016).

The use of natural forested wetlands to process and assimi-
late nutrients from treated municipal effluent has been used in
Louisiana for over 50 years as a cost-effective means to im-
prove overall regional water quality while providing freshwater
and nutrients to hydrologically isolated and degrading wetlands
(Day et al. 2004; Hunter et al. 2009a, 2009b; Shaffer et al.
2016). The nutrient component of municipal effluent increases
wetland vegetative productivity (Rybczyk et al. 1996; Hesse
et al. 1998; Lundberg 2008; Hunter et al. 2009b; Shaffer et al.
2015), and the freshwater component provides a buffer against
saltwater intrusion events, especially during periods of drought,
which are predicted to increase in frequency in the future due to
global climate change (IPCC 2013).

The objective of this research was to demonstrate the po-
tential of using forested wetlands receiving treated municipal
effluent as wetland carbon offset projects. We did this using
the methods and equations from an ACR certified carbon off-
set methodology (Mack et al. 2012).

Study Area

The Luling wastewater treatment facility is located in St.
Charles Parish 30 km west of New Orleans (Fig. 1). The
facility consists of a facultative oxidation pond with a chlori-
nation and dechlorination disinfection system with an average
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discharge of 6000 m’/d (1.6 MGD). Before 2006, the treat-
ment plant discharged into Cousin Canal, which drains into
Lake Cataouatche via the Louisiana Cypress Lumber Canal
(Fig. 1).

The Luling Oxidation Pond needed to be upgraded for a
variety of reasons, including population growth. St. Charles
Parish initially considered re-routing the effluent from the ox-
idation pond through a large force-main to a larger conven-
tional wastewater treatment plant located approximately
16 km away. Later, the Parish considered the more environ-
mentally beneficial option was to discharge the treated efflu-
ent into an adjacent wetland property; however, additional
funds to reimburse the landowner for the servitude were lack-
ing. Therefore, to allow the facility to operate, the parties
agreed that St. Charles Parish, on behalf of the landowner,
would use its best efforts to pursue carbon offsets arising out
of the discharge of treated effluent to compensate the land-
owner for the use of their land.

Starting in 2006, the treated municipal effluent was piped
to an adjacent permanently flooded (20-50 cm) 1439 ha
baldcypress-water tupelo dominated forested wetland
(Fig. 2). Effluent is retained within the project boundaries by
low-lying levees running along the northern, eastern, and
western boundaries that prevent hydrological exchange with
the surrounding landscape, except at the southern most extent
of the project area where water freely flows out of the project
area into the Louisiana Cypress Lumber Canal (Fig. 1). The
primary project area encompasses 1439 ha of mostly forested
wetlands with exception of 93 ha of emergent wetlands at the
southernmost boundary (Fig. 2).

Methods

In general, the amount of carbon sequestered that can
be counted towards carbon offsets depends on the dif-
ference between the carbon sequestration rate under
business-as-usual practices, referred to as the ‘baseline
scenario’, and the carbon sequestration rate that results
from a restoration activity or the ‘project scenario’
(Murray et al. 2007; Murray et al. 2011; Mack et al.
2015). For this study, the project scenario was the dis-
charge of treated municipal effluent into the receiving
wetland and the baseline scenario was the present status
of the wetlands without effluent as derived from peer-
reviewed literature of the area.

There are five general carbon storage pools in wetlands:
aboveground trees; aboveground herbaceous vegetation; sur-
face litter; dead wood; and belowground organic soil that in-
cludes all organic matter from belowground productivity and
also some organic matter produced aboveground that is buried
as detritus. The carbon pools included for this project include
aboveground biomass of trees and soil organic carbon, as well
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Fig. 1 The Luling wetland assimilation project (primary area delineated by the yellow dotted line; map source Google Maps). Letters indicate the

locations where coordinates are given in the inserted box

as methane (CH,4) and nitrous oxide (N,O) emissions. Nitrous
oxide emissions have been included because N,O is a potent
GHG gas, 298 times as powerful as CO,, and measurement is
required by all carbon accounting methods. Herbaceous veg-
etation, surface litter and dead wood were conservatively
omitted since they were expected to either increase or not

1 -\
84,8 ha (209.5 acre)
= X
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change due to the project activity and also were expected to
be incorporated into the soil organic carbon pool over the
long-term and thus be counted.

This analysis used methods and equations described
in the ACR wetland offset methodology ‘Restoration of
Degraded Deltaic Wetlands of the Mississippi Delta’

s, 118.4 ha (292.4 acre)

3

">..363.5 ha (897.8 acre)

Fig. 2 Map of the wetlands receiving treated effluent (delineated by
dashed yellow line; map source Google Earth). White circles and
rectangular boxes indicate where tree biomass and soil accretion were

) % forested

. “excluded: 16 ha (39.5acre) ¢
124

monitored. Red dots indicate where greenhouse gas sampling was
carried out. The area has been delineated into four sections (1-4) based
on hydrology and vegetation patterns
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(Mack et al. 2012). This methodology applies to a wide
range of restoration techniques including hydrologic
management techniques that introduce freshwater, nutri-
ents, and/or sediments to increase wetland productivity.
All of the formulas given below were derived from the
methodology modules BL-WR-HM, CP-S, CP-TB, and
E-E. For all subsequent analyses, positive carbon fluxes
indicate net fluxes into the wetland, whereas negative
carbon fluxes indicate net fluxes to the atmosphere
(Bridgham et al. 2006).

Project Scenario

A total of twenty-four 0.03 ha plots were delineated in a grid
fashion across the project area where accretion and tree
growth measurements were taken (Fig. 2). Six additional
0.04 ha plots were also used that had been delineated previ-
ously to meet state monitoring requirements. The number of
plots was determined by application of the T-PLOTS tool,
with a desired confidence interval of 90% and variance de-
rived from past monitoring data of the assimilation wetland.
Greenhouse gas sampling was carried out bi-monthly with
three replicates at the TMT1, TMT2, TMT3, Mid, and Out
(Fig. 2). Soil samples for bulk density and % carbon analysis
were taken at the TMT1, TMT2, TMT3, and Mid sites. The
project area was delineated into four sections based on hydrol-
ogy and vegetation patterns to reduce within site variability
and increase statistical power (Fig. 2).

Project Carbon Stock Change of Living Trees

The mean carbon stock of aboveground tree biomass was
estimated based on field measurements of all trees in 30 fixed
area plots using allometric equations (Fig. 2; Scott et al. 1985;
Megonigal et al. 1997). The allometric equations express
aboveground tree biomass as a function of diameter at breast
height (dbh, ~1.3 m). The dbh of all trees in each plot were
measured above and below (~5 cm) a metal identification tag
in May 2013 and March 2014. The project tree carbon stock
for the project area was calculated using eq. 1.

n 44
Crree, = ¥ 15 (F;(DBH,H)*CF ;*(1 +R;)) (1)
J=1
where:

Crreep Carbon stock of living trees in sampling plot p;
mt CO2e

44/12 Ratio of molecular weight of CO2 to carbon;
dimensionless

F;(DBH,H)  Allometric equation for species j linking DBH
to aboveground biomass; ton d.m.

CF; Carbon fraction of biomass; dimensionless
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R; Root-shoot ratio for tree species or group of
species j; dimensionless - set to zero
Jj 1, 2, 3, ... n tree species or group of species

These data were then applied to eq. 2 to calculate values of
Crrer and Crpegyo for the start and end of the study. The
carbon stock was calculated as the difference between the two

vears (Crrege - Crree)-

A 2
CrreE = T > Crreg, (2)
p \p=1
where:
Crrer Carbon stock of living trees in the project area; mt

CO2e
A, Total project area; ha
A, Total area of sample plots; ha
P 1, 2, 3, ... n sample plots

Bulk Density

Bulk density samples were collected in triplicate at the TMT],
TMT2, TMT3 and Mid sites (Fig. 2). The top several cm of
substrate was collected using a thin walled aluminum coring
tube, brought to the laboratory, dried at 105 °C to a constant
weight, and bulk density determined based on the weight and
volume of the sample (Brady and Weil 2001; NRCS 2011).

Soil Carbon Fraction

The soil carbon fraction was determined using subsamples
from the bulk density samples described above. The subsam-
ples were weighed and analyzed for percent organic carbon by
dry combustion (i.e., loss on ignition (LOI)) using a Neytech
85 M controlled-temperature furnace as detailed in NRCS
(2011). Additional samples were analyzed for % carbon using
a Vario EL Cube model elemental analyzer by Elementar
(Chatterjee et al. 2009), as well as bulk density using the
methods described above (Brady and Weil 2001; NRCS
2011).

Project Carbon Stock Change of Wetland Soils

Feldspar markers were put in place at 24 of the tree
biomass plots when the trees were initially measured
(DeLaune et al. 1983; Cahoon and Turner 1989;
Conner and Day 1991). The thickness of material accu-
mulated above the feldspar marker horizons was mea-
sured ten months later using a thin walled aluminum
coring tube. The rate of vertical accretion was calculat-
ed by dividing the mean thickness of material above the
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surface of the horizon by the amount of time the hori-
zon had been in place (10 months) extrapolated to a
yearly value. The carbon stock change of wetland soils
was calculated using eq. 3.

n

44
ACsoc =— Y. (CFSOC_samplc,_, *BD,-J *Depthn *Area,-,, *001)

12 5
(3)
where:
ACsoc Cumulative soil carbon stock changes since
start of project activities; mt CO2e
44/12 Ratio of molecular weight of CO, to carbon;

dimensionless

CFs0c¢ sampie;  Carbon fraction of the sample; g C gf1 d.m.

BD; Bulk density of soils; g cm >

Depth; Depth to feldspar marker, cm

Area; Project area;, m>

0.01 Multiplier to convert units into ton C

i 1, 2, 3, ... n strata in the project scenario — set
to 1 for this study

Project Emissions

Methane (CH4) and nitrous oxide (N,O) emissions were
measured using the static chamber method (Smith et al.
1982; 1983a, b; Klinger et al. 1994; Livingston and
Hutchinson 1995) at five locations in the study area;
TMTI1, TMT2, TMT3, Mid, and Out (Fig. 2). Gas
chambers consisted of an inverted 5-gal bucket attached
on top of a floating Styrofoam ring. A rubber septum
inserted on the top of the chamber was used as a sam-
pling port. Twenty-cm® gas samples were taken as soon
as chambers were placed on the water surface (7 = 0),
30 min, and 60 min. These time intervals were selected
based on preliminary results to optimize detection of
GHGs. Gas samples were injected into pre-vacuumed
10-cm® vacutainers and brought back to the laboratory
for CH4 and N,O analysis using a gas chromatograph
(e.g., Varian 3800) equipped with a dual Flame
Ionization-Thermionic Specific (FID/TCD) system and
an electron capture detector (ECD). Mean hourly rates
were calculated as averages of the data collected, and
total emissions were calculated by extrapolating the
mean hourly rates to the respective time periods be-
tween sampling.

Greenhouse gas emission data were converted to CO,
equivalents (CO2e) based on the 100-year Global Warming
Potential (GWP) factors listed in the IPCC Fourth Assessment
Report (IPCC 2007). Factors used were 25 for CH4 and 298
for N,O. These scaling factors represent the global warming

potential for CH; and N,O over a 100-year time hori-
zon. These greenhouse gas emission data were then ap-
plied to eq. 4.

n n
fGHGg, = Y, f GHGcy,_,,*GWPcns + 3. [ GHGN,0_i,*GWPy20
i1 =

=1
(4)
where:

fGHGg, Rate of GHG emissions from the project area at

monitoring event #; mt CO2e hr.”'

f Rate of CH, emissions from stratum i at

GHG¢yy ¢y  monitoring event ¢, mt CO2e hr.!

GWP Global warming potential for CHy (= 25 per
ACR Standard); mt CO2e (t CH,) '

f Rate of N,O emissions from stratum 7 at

GHGn;0 ;; monitoring event £, mt CO2e hr.”!

GWPx20 Global warming potential for N,O (= 298 per
ACR Standard); mt CO2e (t N,O) !

i 1, 2, 3, ... n strata in the project scenario

t 1, 2, 3, ... n monitoring event

These results were then applied to eq. 5 to estimate the
GHG emissions from the project area due to project activities.

1 n

AGHGg = <— > fGHGE,,> *T,*8766 (5)
n =1

where:

AGHGg Cumulative GHG emissions from the project area;

mt CO2e

T, Time since start of project activities; yr 1,2,3, ...n

t monitoring event

8766 Number of hours in a year

Baseline Scenario

A literature review was carried out to determine the baseline
values for carbon sequestration from the forested wetlands in
the Mississippi River delta plain (Table 1). These data were
used as a reference of what would have occurred had the
restoration activity not taken place. The review was assembled
entirely from peer-reviewed literature. Summary statistics
were carried out using JMP statistical software produced by
SAS Institute, Inc. (Sall et al. 2012). The baseline parameters
were applied to the amount of area of the various habitat types
to determine baseline carbon sequestration.
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Table 1  Baseline carbon sequestration derived from the scientific literature (metric tons CO2e/haly). s.e. = standard error
Mean  Min Max s.e. n  Source
Baseline Tree (Fresh - Forested): 6.7 1.5 11.9 099 10 Conner and Day (1976); Conner et al. (1981); Megonigal et al. (1997);
Day et al. (2006); Hunter et al. (2009a, b); Shaffer et al. (2009b)
Baseline Soil (Fresh - Forested): 3.0 1.2 4.9 0.62 5  Craft and Casey 2000; Day et al. 2004; Noe & Hupp 2005;
Lane et al. 2016
Baseline CHy (Fresh - Forested):  —64.5 0.0 —228.0 36.80 6  Crozier and DeLaune 1996; Alford et al. (1997);
Yu et al. (2008)
Baseline N,O (Fresh - Forested):  —39.0 —1.5 —212.7 3483 6 Lindau et al. 1994; Boustany et al. 1997; DeLaune et al. (1998);
Lindau et al. (2008); Yu et al. (2008); Scaroni et al. (2011, 2014)
Baseline Soil (Fresh - Emergent): 7.9 22 114 0.74 8  Hatton et al. (1982, 1983); DeLaune and Smith (1984);
Feijtel et al. (1985); Rybezyk et al. (2002); Nyman et al. (2006)
Baseline CH, (Fresh - Emergent): —131.2 —12.8 -251.0 3236 6  DeLaune et al. (1983); DeLaune and Smith (1984);
Feijtel et al. (1985); Crozier and DeLaune (1996)
Baseline N,O (Fresh - Emergent): —0.2 -1.0 05 0.25 4  Smith et al. (1983a, b); DeLaune et al. (1989)

Results
Project Scenario
Project Carbon Stock Change of Living Trees

706 trees were measured to determine biomass. The results
were fed into eq. 1 to provide an estimate of the carbon stock
of living trees for each plot (Table 2).

The cumulative carbon stock changes of trees was 972.5 mt
CO2e for section 1, 1135.8 mt CO2e for section 2, and 1981.9
mt CO2e for section 3 (Table 3; Fig. 2). The cumulative
amount of carbon sequestered by trees in the project area
was 4090.1 mt CO2ely.

Bulk Density & Soil Carbon Fraction

Bulk density ranged from 0.12 to 0.19 g/cm®, with an average
0of 0.14 £ 0.01 g/cm3 at site TMT1, 0.17 £ 0.01 g/cm3 at site
TMT2, 0.18 + 0.01 g/em® at site TMT3, and 0.13 + 0.003 g/
cm’ at the Mid site. There was not a statistically significant
difference in the bulk density of the soil between sites. The
average for all sites combined was 0.16 + 0.01 g/cm’.

Percent loss on ignition (%LOI) ranged from 51.6 to
81.1%. Assuming and average carbon content of 50% for
the %LOI fraction, percent carbon ranged from 25.8 to
40.5%, with an average of 36.3 = 0.02% at TMTI,
33.3 £ 0.04% at TMT2, 30.0 + 0.03% at TMT3, and
34.5 + 0.02% at the Mid site. There was not a statistically
significant difference in the %LOI of the soil between sites.
The overall average was 33.6 + 0.01%.

The % carbon results from the autoanalyzer were
36.2 £ 2.27%, which was very similar to the %LOI results
of 33.6 = 0.01%, and the bulk density values from the two
sampling efforts were also very similar, 0.16 + 0.01 vs.
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Table 2 Changes in carbon stock of living trees in sampling plots
(CTREE,p)

Site n  Crgregp; mt Crree,p2 mt Plot Size Section

CO2e CO2e ha

TMT3 26 1593 16.52 0.04 1
TMT3 14 9.84 10.14 0.04 1
TMT3 22 11.11 11.59 0.04 1
TMT1 20 1691 17.40 0.04 1
TMT1 24 17.97 18.56 0.04 1
TMT1 17 17.31 17.64 0.04 1
L1 23 11.99 12.39 0.0333 1
L2 20 20.45 20.87 0.0333 1
L3 21 2141 21.77 0.0333 1
L4 19 14.60 14.93 0.0333 1
L5 30 14.93 15.20 0.0333 2
L6 21 12.29 12.61 0.0333 2
L7 27 12.02 12.30 0.0333 2
L8 17 13.30 13.57 0.0333 2
L9 32 1582 16.16 0.0333 2
L10 47 20.74 21.10 0.0333 2
L11 19 15.86 16.24 0.0333 2
L12 13 16.30 16.47 0.0333 3
L13 30 6.8 6.72 0.0333 3
L14 15 949 9.60 0.0333 3
L15 30 1442 14.74 0.0333 3
L16 23 401 4.20 0.0333 3
L17 24 21.69 22.02 0.0333 3
L18 39 8.14 8.43 0.0333 3
L19 19 7.5 7.36 0.0333 3
L20 24 3.77 3.83 0.0333 3
L21 19 5.79 5.89 0.0333 3
L2216 17.54 17.71 0.0333 3
L23 36 10.00 10.09 0.0333 3
L24 19 1136 11.56 0.0333 3
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Table 3  Accretion data used to estimate soil carbon stock (ACsoc)

Site Depth cm CF BD Csoc kg
CO2e/m*/y

L2 0.74 0.362 0.143 1.41

L3 1.20 0.362 0.143 2.28

L4 0.70 0.362 0.143 1.33

L5 1.87 0.362 0.143 3.56

L6 0.78 0.362 0.143 1.48

L7 0.26 0.362 0.143 0.49

L8 1.56 0.362 0.143 2.97

L9 0.67 0.362 0.143 1.27

L10 0.62 0.362 0.143 1.18

L1l 0.41 0.362 0.143 0.78

L12 2.16 0.362 0.143 4.11

L13 0.89 0.362 0.143 1.69

L14 1.06 0.362 0.143 2.02

L15 0.74 0.362 0.143 1.41

L16 0.31 0.362 0.143 0.59

L17 2.09 0.362 0.143 3.97

L18 2.04 0.362 0.143 3.88

L19 0.34 0.362 0.143 0.65

L20 1.44 0.362 0.143 2.74

L21 1.08 0.362 0.143 2.05

L22 1.13 0.362 0.143 2.15

L23  2.04 0362  0.143  3.88 ACsoc

L24 1.08 0.362 0.143 2.05 (mt CO2ely)
2.09+0.24 13,752

0.13+0.01 g/cm’, respectively. For this analysis we used the
% carbon results from the elemental analyzer, since it is pre-
sumed to be more accurate than the %LOI method, and we
used an average of both sets of bulk density measurements
(0.14 g/em?).

Project Carbon Stock Change of Wetland Soils

Soil accretion ranged from 0.26 to 2.16 cm/yr. with a mean
value of 1.09 £+ 0.13 cm/yr. (Table 4). Carbon stock at the
individual plots ranged from 0.49 to 4.11 kg CO2e/m*/y with
a mean of 2.09 + 0.24 kg CO2e/m?/y Extrapolated to the
project area, this mean value provided a total soil carbon se-
questration rate of 13,752 mt CO2e/y (Table 3).

Project Emissions

Methane emissions at TMT1 ranged from 2.2 to 272.3 mg/m?/
h with a mean of 71.1 + 41.4 mg/m*/h. Emissions decreased at
TMT2 to 48.3 £ 27.3 mg/m*/h with a range of 1.74 to
177.2 mg/m*/h, but increased at TMT3 to 108.2 + 42.4 mg/
m?%/h with a range of 7.4 to 286.3 mg/m*/h (Table 4). Methane
emissions at the Mid site ranged from 1.49 to 28.38 mg/m*/h

with a mean 0f 9.0 £ 4.4 mg/mz/h, while at the Out site emis-
sions ranged from below detection to 124.8 mg/m?*/h with a
mean of 54.6 = 22.9 mg/m*/h. Extrapolation of these measure-
ments to the entire study area indicates that total CH4 emis-
sions were 185.5 g CH,/m?/yr.

Nitrous oxide (N,O) emissions at TMT1 had a mean of
0.0987 £ 0.0498 mg/m?/h and ranged from 0.0115 to
0.3416 mg/mz/h (Table 4). There was a decrease in N,O emis-
sions at TMT2, which ranged from below detection to
0.1921 mg/m*h with a mean of 0.0542 + 0.0303 mg/m*/h,
followed by another decrease at TMT3, which had a mean of
0.0201 £ 0.0122 mg/m* h and ranged from below detection to
0.0790 mg/m?/h. Nitrous oxide emissions at the Mid site were
higher than at TMT1 with a mean 0f0.0989 + 0.0961 mg/m*/h
and a range of below detection to 0.5794 mg/m?/h. Emissions
at the Out site ranged from below detection to 0.0169 mg/m*/h
with a mean of 0.0058 + 0.0029 mg/m?/h. Extrapolation of
these measurements to the entire study area indicates that total
N,O emissions were 0.76 g NZO/mz/yr.

The CH4 and N,O emissions described above were applied
to eq. 4 to derive the rate of GHG emissions from the project
area during each sampling event (f GHGE ; Table 4). These
results were then applied to eq. 5 to determine the total emis-
sions from the project area during the study period of —32,982
mt CO2e (AGHG; Table 4).

Project Carbon Stocks

The carbon stock changes and greenhouse gas emissions rates
given above were used calculate net greenhouse gas emission
reductions for the project of —15,140.13 mt CO2e/y if green-
house gasses were included and 17,842 mt CO2e/y if they
were omitted (Table 5).

Baseline Scenario

The baseline carbon stock change of the living trees was esti-
mated to be 6.7 mt CO2¢/ha/y (Table 1), which multiplied by
the area of forested wetlands in the project area (566.7 ha)
provided an estimate of the baseline carbon stock change for
the project area of 3790 mt CO2e/y (Table 5). The baseline
carbon stock change of wetland soils was estimated to 3.0 mt
CO2e/haly at the freshwater forested wetlands and 7.9 mt
CO2e/haly at the freshwater emergent wetlands (Table 1).
These values were multiplied by the area of forested
(566.7 ha) and emergent wetlands (93.0 ha), respectively,
and summed to provide a baseline carbon stock change for
the soils in the project area of 2435 mt CO2e/y (Table 5). The
baseline CH,4 emissions were estimated to be —64.5 mt
CO2e¢/haly at the freshwater forested wetlands and —131.2
mt CO2e/haly at the freshwater emergent wetlands (Table 1).
Baseline N,O emissions were estimated to be —39.0 mt
CO2¢/haly at the freshwater forested wetlands and —0.2 mt
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Table 4 GHG emissions from the project area on dates sampled

Site Date CH,4 Flux N,O Flux StratArea m> fGHG ;4 mt fGHG,,;, mt JfGHGE, mt mt CO2ely
mg/m*/h mg/m*/h CO2e/h CO2e/h CO2e/h

TMT1 3/25/14 -222 -0.0713 185,000 —0.0103 —0.0039 -0.0142

TMT1 5/20/14 —53.87 —-0.0237 185,000 —0.2491 —0.0013 -0.2505

TMT1 7/28/14 -272.27 —0.0830 185,000 —1.2593 —0.0046 -1.2638

TMT1 9/17/14 —63.67 —0.0608 185,000 —0.2945 —0.0034 -0.2978

TMT1 11/20/14 —24.98 —0.0115 185,000 —0.1155 —0.0006 -0.1162

TMT1 1/27/15 —9.58 —0.3416 185,000 —0.0443 —0.0188 —0.0632 —2930.2

TMT2 3/25/14 -10.79 —0.0379 216,000 —0.0583 —0.0024 -0.0607

TMT2 5/20/14 —60.63 —0.0824 216,000 —0.3274 —0.0053 -0.3327

TMT2 7/28/14 -177.23 —-0.0103 216,000 —-0.9570 —-0.0007 -0.9577

TMT2 9/17/14 —34.04 bd 216,000 —0.1838 0.0000 -0.1838

TMT2 11/20/14 -1.74 —-0.0026 216,000 —-0.0094 —-0.0002 -0.0095

TMT2 1/27/15 =51 -0.1922 216,000 -0.0275 -0.0124 —-0.0399 —2314.8

TMT3 3/26/14 =741 —-0.0218 227,000 —-0.0420 —-0.0015 -0.0435

TMT3 5/20/14 —44.02 -0.0129 227,000 —0.2498 —-0.0009 -0.2507

TMT3 7/28/14 —286.25 bd 227,000 —1.6245 0.0000 -1.6245

TMT3 9/17/14 —173.81 bd 227,000 —0.9864 0.0000 -0.9864

TMT3 11/20/14 —87.14 —0.0071 227,000 —0.4945 —0.0005 -0.4950

TMT3 1/27/15 -50.86 -0.079 227,000 —0.2886 —0.0053 —0.2940 —5397.0

MID 3/26/14 -1.58 —0.0028 5,039,000 —0.1995 —0.0042 -0.2037

MID 52314 -2.27 —0.0087 5,039,000 —0.2854 -0.0130 -0.2984

MID 7/28/14 —28.38 bd 5,039,000 —3.5755 0.0000 -3.5755

MID 9/18/14 —14.12 bd 5,039,000 -1.7782 0.0000 -1.7782

MID 11/21/14 -1.49 —0.0028 5,039,000 —0.1873 —0.0042 -0.1915

MID 12715 -5.93 -0.5794 5,039,000 —0.7468 —-0.8700 -1.6168 -11,197.2

ouT 32714 -17.94 —-0.0035 930,000 -0.4171 —-0.0010 -0.4181

OouT 5/30/14 —66.57 —-0.0123 930,000 —1.5478 —-0.0034 -1.5512

OuT 7/29/14 —115.43 -0.0015 930,000 —2.6838 —-0.0004 -2.6842

OuUT 9/23/14 —124.84 —-0.0007 930,000 -2.9026 —-0.0002 -2.9028

OuT 11/19/14 -2.84 -0.0169 930,000 —0.0659 —0.0047 -0.0706

ouT 1/27/15 bd bd 930,000 0.0000 0.0000 0.0000 —11,142.8

AGHGg: -32,982

CO2e/haly at the freshwater emergent wetlands (Table 1).
These values multiplied by the area of forested (566.7 ha)
and emergent wetlands (93.0 ha) wetlands were summed to

Table 5 Baseline, Project and Net emissions estimated using field data
for the project activity and literature values for the baseline

Baseline mt Project mt Net Cseq mt
CO2ely CO2ely CO2ely
ACrreg 3790 4090
ACsoc 2435 13,752
Net w/out GHG, 6225 17,842 11,617
AGHGg -70,870 —32,982
Net with GHG, —64,645 —15,140 49,505

@ Springer

provide baseline emissions in the project area of —70,870 mt
CO2ely (Table 5).

Net Project Carbon Sequestration

The total net greenhouse gas emissions reductions of the pro-
ject activity were calculated with and without greenhouse gas
emissions. The cumulative carbon sequestered by the trees
and soils in the Project scenario was 4090 and 13,752 mt
CO2ely, respectively, while the greenhouse gasses were emit-
ted at —32,982 mt CO2e¢/y. The Baseline scenario sequestered
3790 and 2435 mt CO2e¢/y by the trees and soils, respectively,
while emitting —70,870 mt CO2e/y in greenhouse gasses. The
net difference between the Project and Baseline emissions was
11,617 mt CO2el/y if greenhouse gasses are omitted and
49,505 mt CO2ely if they are included (Table 5).
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Discussion

This study demonstrates the potential of using forested wet-
lands receiving treated municipal effluent as wetland carbon
offset projects for the net sequestration of carbon. Most of the
carbon sequestered that we measured in this study was in the
soils. Peat soils of wetland environments have the highest C
content of all the soil orders (Bridgham et al. 2006) due to very
high net primary production coupled with slow organic matter
decomposition (Reddy and DeLaune 2008; Mitsch and
Gosselink 2015). This makes wetland soils an important sink
for atmospheric CO, (Bridgham et al. 2006; Hansen and
Nestlerode 2014), especially in areas with high rates of subsi-
dence. In this study, carbon sequestration by soils averaged
2.09 + 0.24 kg CO2e/m?/y in contrast to the 0.84 = 0.06 kg
CO2e/m*/y sequestered by trees. This is similar to the findings
reported by Day et al. (2004) for soils at the assimilation
wetlands in Thibodaux, LA (2.24 kg CO2e/m?/y) and for the
assimilation wetlands at Pointe aux Chene (2.56 kg
CO2¢/m?ly; Rybezyk et al. 2002). The carbon sequestered
by the trees in this study was lower compared to the assim-
ilation wetlands at Breaux Bridge (1.71-2.85 kg CO2e/m?/y;
Day et al. 2004; Hunter et al. 2009a), or those at Amelia
(2.73 kg CO2e/m*/y; Day et al. 2006), perhaps because
these later projects benefit from long-term datasets making
the methods used more accurate. Close agreement with these
other studies indicates validity of the methods used by the
ACR methodology (Mack et al. 2012).

Annual methane emission estimates from this study were
185.5 g CHy/m?/yr., which is higher than, but comparable to
other wetlands with nutrient inputs, such as 62.3 g CHy/m?/yr.
reported by Holm et al. (2016) for wetlands located 4 km
eastward from our study area that receive river water from
the Davis Pond Mississippi River Diversion, and 72.1 g
CH./m?/yr. reported by Kadlec & Wallace (2009) for ten free
water surface treatment wetlands in Europe. However, natural
wetlands without nutrient inputs have been shown to emit
methane at comparably high rates; for example, Yu et al.
(2008) reported mean emissions of 182.6 g CH,/m*/yr. at
the Jean Lafitte National Historic Park and Preserve located
south of New Orleans, Louisiana. Wang et al. (2008) reported
emissions of >1000 g CH4/m?/yr. at experimental treatment
wetlands in Japan. Methane emission rates, however, may not
be as important as previously thought; though CH, flux may
have a warming effect on climate over decadal time scales,
across centuries wetlands can be expected to act as net radia-
tive sinks (Poffenbarger et al. 2011). The GWP of methane is
dependent on the time interval over which the radiative forc-
ing is integrated. Over a short-term integration period (ca.
20 years), the GWP of methane is estimated to be 21.8; how-
ever, the GWP of CH, falls to between 7.6 and 2.6 when
considered over the time horizons of 100 to 500 years due to
the decay of methane in the atmosphere over time (Whiting

and Chanton 2001). Mitsch et al. (2013) demonstrated by
dynamic modeling that methane emissions become unimpor-
tant within 300 years compared to carbon sequestration in
temperate and tropical wetlands and that most wetlands be-
come both net carbon and radiative sinks within that
timeframe. The modeling done by Mitsch et al. (2013); how-
ever, may have underestimated the radiative forcing effect of
methane (CH,4) emissions and overestimated soil C sequestra-
tion in freshwater wetlands (Bridgham et al. 2014). The im-
plication of these studies is that the impact of methane on the
warming of the planet may be exaggerated over the long-term
by the use of the currently accepted GWP values.

There has been considerable discussion over the past de-
cade about the effects of nutrient loading on coastal wetlands
with regard to belowground productivity, soil strength, and
soil organic matter decomposition (Darby and Turner 2008a,
b, c; Swarzenski et al. 2008; Turner 2010; Deegan et al. 2012;
Fox et al. 2012; Anisfeld and Hill 2012; VanZomeren et al.
2012; Day et al. 2013; Morris et al. 2013a; Graham and
Mendelssohn 2014; Nyman 2014). In particular, there have
been concerns that nutrient loading to coastal wetlands causes
decreased belowground productivity and soil strength and in-
creased soil organic matter decomposition, which decreases
wetland resilience to disturbance and leads to increased sub-
sidence and land loss (Darby and Turner 2008a, b, c; Deegan
et al. 2012). However, there have been numerous studies
showing either increased growth or no effect to baldcypress
that are exposed to nutrient rich waters (Hesse et al. 1998;
Lundberg et al. 2011; Keim et al. 2012). For example,
Brantley et al. (2008) found significantly higher cypress
growth downstream of effluent discharged from the
Mandeville wastewater treatment plant. And Shaffer et al.
(2009b) found increased growth rates in the Maurepas basin
in areas receiving regular non-point source inputs, as did
Effler et al. (2006) for trees given nutrient amendments.
Hunter et al. (2009a) found slightly higher, but not significant,
cypress growth at the Breaux Bridge assimilation wetlands.

Wetland projects have the potential for carbon sequestered
to be released back to the atmosphere when a project has
exposure to risk factors such as sea level rise and saltwater
intrusion, hurricanes, fires, and damage from wildlife such as
canopy insects (e.g., baldcypress leafroller (Archips
goyerana)) and nutria herbivory (Myocaster coypus; Evers
et al. 1998; Lane et al. 2016). When vegetation death occurs,
part of the soil organic carbon pool is decomposed (oxidized)
and released as either CO, or CH, (Davidson and Janssens
2006; DeLaune and White 2011; Mcleod et al. 2011;
Pendleton et al. 2012). These ‘prevented emissions’ may be
claimed as carbon credits if project activities are successful in
preventing the loss of the wetland soil horizon (Lane et al.
2016). Also, the direct result of the loss of wetlands is the loss
of their sequestration capacity and GHG emissions, that is, as
the wetland area becomes smaller so does the amount of
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carbon it can sequester and GHGs it can release. This ‘loss of
sequestration capacity’ can be calculated as the proportion of
wetlands lost over a given period of time if restoration project
activities were not to take place (Mack et al. 2012). Since the
greatest soil carbon sink is subsidence, which permanently
buries dead wood and other organic matter, much of these risk
factors impact the ability for future carbon sequestration and not
necessarily a reversal of carbon already sequestered and buried.

One of the greatest threats to restoration and sustainability
of coastal wetlands worldwide is accelerating sea level rise
(Blum and Roberts 2012; Day et al. 2016). Current eustatic
sea-level rise (ESLR) is between 2 and 3 mm yfl, and there is
a strong scientific consensus that the rate of ESLR will accel-
erate in association with global warming (FitzGerald et al.
2008; Meehl et al. 2009; McCarthy 2009). Increasing eustatic
sea-level rise is especially critical in the Mississippi Delta
because it is augmented by high rates of geologic subsidence.
Relative sea level rise (RSLR), which is the combination of
ESLR and subsidence, ranges from 5 to 8 mm y ' in the
region surrounding the project area (Shinkle and Dokka
2004). However, restoration projects that provide much need-
ed freshwater and nutrients restore vital land building process-
es through increased vegetative productivity and soil accre-
tion, which can offset or largely mitigate RSLR (Day et al.
2004; Izdepski et al. 2009). In addition, the discharge of fresh-
water into wetlands creates a buffer to saltwater intrusion
events that can be lethal to freshwater wetlands.

The wise utilization of freshwater resources is necessary to
provide reliable sources of water to freshwater forested and
emergent wetlands to prevent ongoing saltwater intrusion and
to increase vertical accretion through either direct sediment
deposition or organic soil formation (Morris et al. 2013a, b;
Nyman 2014). Without consistent freshwater input, most for-
ested wetlands in coastal Louisiana will not survive. Even if
saltwater impacts can be reduced, forested wetland soils need
to accrete vertically if they are to survive in the long-term
because regeneration cannot occur with permanent or semi-
permanent flooding (Conner et al. 2014). Currently, many
sources of freshwater exist, such as secondarily treated munic-
ipal effluent, nonpoint source stormwater runoff, municipal
stormwater, and river water. However, most of these sources
are currently engineered to maximize drainage efficiency by
bypassing wetlands using ditches and canals that discharge
directly to lakes and rivers (Lane et al. 2015a, 2015b).
Rerouting the water to maximize sheet flow over wetlands
would reduce nutrient input to surface waters and thus im-
prove regional water quality and increase wetland productiv-
ity, while decreasing impacts of saltwater intrusion, sea level
rise, and subsidence.

Wetland restoration is a critical tool to combat wetland loss
and is an effective climate change mitigation strategy. The re-
sults of this study demonstrate that the assimilation of treated
municipal effluent by cypress-tupelo wetlands increases

@ Springer

wetland productivity and enhances carbon sequestration. This
project supports the inclusion of wetland restoration manage-
ment approaches in the emerging carbon market and GHG
policy regimes to supplement critical funding to facilitate rapid
and effective climate change mitigation and adaptation.
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