Mandeville Wetland Assimilation Monitoring Report

July-September 2018

By:Robert R. Lane, PhD
Rachael G. Hunter, PhD
John W. Day, PhDFor:David deGeneres
Director of Public Works
City of Mandeville
100 Mandeville High Blvd.
Mandeville, LA 70471Covington, LA 70435For:David deGeneres
Director of Public Works
City of Mandeville
Mandeville, LA 70471

September 27, 2018

WWW.COMITERES.COM

Comite Resources, Inc 21245 Smith Road Covington, LA 70435

John W. Day, Ph.D. iwday@comiteres.com Robert R. Lane, Ph.D.

rlane@comiteres.com

rhunter@comiteres.com

225-247-3917 Rachael G. Hunter, Ph.D. 225-439-3931

Mandeville Wetland Assimilation **Monitoring Report**

Summary of Activities: July-September 2018

Site visits

July 9, 2018: Comite Resources biologist Jason Day and Joel Mancuso visited the Mandeville and Tchefuncta Marsh assimilation wetlands to carry out monthly monitoring. Leaf Litter biomass was collected from each forested site (M-Tmt, M-Mid, M-Ref & TM-Tmt). Dissolved oxygen, conductivity, temperature, salinity and pH were measured at all sites except Mand Ref and TM-Ref where there was no standing water (see data below). Discharge was at TM-TMT. A free chlorine measurements were made along the canal north of the Tchefuncta marsh where 2.92 ppm was recorded. A package plant discharges into this canal that leads out to the Mandeville Tchefuncta Marsh assimilation wetland.

					,,	Watar
	DO (mg/l)	Cond (mS)	Temp. (°C)	Sal (PSU)	pН	Level (cm)
M-PIPE	3.2	420.2	26.7	0.2	6.9	
M-TMT	1.7	179.9	26.4	0.1	7.0	25.7
M-MID	1.0	198.5	26.0	0.1	7.6	2.6
M-OUT	1.8	243.2	26.1	0.1	7.2	2.8
M-REF	1.8	131.2	25.8	0.1	7.2	
TM-TMT	2.3	364.3	27.1	0.2	7.1	19.1
TM-MID	0.5 🤇	791.0	27.3	0.4	6.9	3.3
TM-OUT	1.2	832.9	26.7	0.4	7.0	1.8
TM-REF	2.3	613.2	28.1	0.3	7.0	

Discrete water quality data from the Mandeville and Tchefuncta Marsh assimilation wetlands on July 0, 2018

August 21, 2018: Comite field crew Jason Day and Joel Mancuso carried out monitoring at the Bayou Chinchuba and Tchefuncte Marsh assimilation wetlands. Leaf Litter biomass was collected from each forested site (M-Tmt, M-Mid, M-Ref & TM-Tmt). Dissolved oxygen, conductivity, temperature, salinity and pH were measured at all sites. TM-T discharge is off. Water nutrient and water metals samples were taken at all sites TM-Out. Water nutrients were delivered to Curtis Environmental in LaPlace, LA. Free chlorine measurements were made at the package plant that discharges into a canal that leads out to the Mandeville TM assimilation wetland. Measurements were made at the package plant discharge pipe (0.2 ppm) and where the canal meets the wetland (0.0 ppm). Vegetation percent cover estimates were done at all sites. Accretion measurements were taken at the TM-T site. The TM-Mid site was not visited due to land access issues.

Jason Day at the TM-Ref site on August 21, 2018.

Discrete water quality data from the Mandeville and	
Tchefuncta Marsh assimilation wetlands on August 21, 2	018

						Water
	DO	Cond	Temp.	Sal		Level
	(mg/l)	(mS)	(°C)	(PSU)	рН	(cm)
M-PIPE	5.7	577.1	28.9	0.3	7.1	-
M-TMT	2.9	301.5	28.6	0.2	7.1	37.8
M-MID	1.3	175.2	29.1	0.1	6.9	2.5
M-OUT	2.1	240.4	29.6	0.1	6.7	1.8
M-REF	1.6	166.5	28.4	0.1	6.8	
TM-TMT	2.0	386.2	28.4	0.2	6.9	38.3
TM-MID						
TM-OUT	2.0	602.0	27.7	0.3	7.4	1.3
TM-REF	3.1	361.5	28.6	0.2	7.1	-
						1 and 1 and 1
		V A				

September 19 & 27, 2018: Comite Resources biologist Jason Day and Joel Mancuso visited the Mandeville and Tchefuncta Marsh assimilation wetlands to carry out monthly monitoring Leaf Litter biomass was collected from each forested site (M-Tmt, M-Mid, M-Ref & TM-Tmt). Dissolved oxygen, conductivity, temperature, salinity and pH were measured at all sites including the discharge pipe (see data below). TM-T discharge was on. End-of-season-live (EOSL) samples were taken at the M-Out, TM-Out and TM-Ref sites. EOSL samples were taken to the Comite Resources lab for processing and analysis. Free chlorine measurements were taken along the canal north of the Tchefuncta marsh. The package plant chlorine concentration was 2.30 ppm while at the receiving wetland was undetectable. Probe measurements, EOSL and water levels were not taken at the TM-Mid site due to access issues. An airboat is required to access site due to high floating aquatic vegetation growth in the canal.

					1/	
	DO (mg/l)	Cond (mS)	Temp. (°C)	Sal (PSU)	pН	Water Level (cm)
M-PIPE	1.8	501.1	27.0	0.2	6.9	
M-TMT	0.3	253.9	27.7	0.1	6.6	31.2
M-MID	1.2	343.2	26.4	0.2	6.6	6.3
M-OUT	0.4	183.0	26.0	0.1	7.1	2.5
M-REF	2.0	316.1	26.4	0.1	6.8	3.5
TM-TMT	2.8	648.0	26.5	0.3	6.3	33.5
TM-MID						
TM-OUT	0.8	2848.1	26.0	1.5	6.9	5.6
TM-REF	1.8	1491.6	26.6	0.7	7.0	7.2

Discrete water quality data from the Mandeville and Tchefuncta Marsh assimilation wetlands on September 19 and 27, 2018.

Joel Mancuso at the TM-Ref site on September 27, 2018.

Annual Report

Comite Staff wrote and submitted the 2017 Annual report to be submitted to LDEQ. An abbreviated version of the report has been appended to this document.

LOUISIANA POLLUTANT DISCHARGE ELIMINATION SYSTEM (LPDES)

Wetland System Monitoring Requirement

for

City of Mandeville Wetland Assimilation Project Permit Number: LA0038288 Agency Interest Number: AI 19420 Activity Number: PER20010001

Comite Resources

2017 Annual Wetland Monitoring & Reporting Requirements Due one year from the effective date of the permit

> Permit Year: 1 2 3 4 5 (circle one) Date: August 23, 2018

ANNUAL WETLAND MONITORING & REPORTING REQUIREMENTS

Summary Sheet Due each year on the effective day of the permit

City of Mandeville Chinchuba Swamp & East Tchefuncte Marsh Wetland Assimilation Project 3101 East Causeway Approach Mandeville, Louisiana 70448 PERMIT NUMBER: <u>LA0038288</u> AGENCY INTEREST NUMBER: <u>AI19420</u> ACTIVITY NUMBER: <u>PER20080001</u>

GROWTH STUDIES ~ WOODY BIOMASS (Flora)

	GROWTH STUDIES ~ Woody Biomass (Flora)											
DADAMETED	Wastewa	ter Management Are	a (g/m²/yr)	Reference Area (g/m²/yr)								
FANAMETER	UAA Overall Average	Current Overall Average	Difference ¹	UAA Overall Average	Current Overall Average	Difference ¹						
BC ² Treatment	ND ³	588.7±131.9	ND									
BC Mid	ND	359.0±66.6	ND									
TM ⁴ Treatment	234.6±64.9	323.2±46.2	1									
Forested Reference				ND	623.4±131.6	ND						

¹ The difference in the UAA value and the Current value shall be indicated by **NO INCREASE = 0**, **INCREASE = 1**, or **DECREASE = 2**. ²BC = Bayou Chinchuba.

³Not determined.

⁴TM = Tchefuncte Marsh

ANALYSIS OF VARIANCE (ANOVA)

Was there a significant difference (p=0.05) between stem growth (flora) in the control and the treatment area?

□ YES ✓ NO

If yes, please explain the significance between the control and the treatment areas and outline any corrective actions taken, if needed.

No difference in woody biomass among sites was detected [F(3,8)=2.3082, p=0.1531].

Additional Information: Over one hundred baldcypress seedlings were planted in 2011 at the Tchefuncte Marsh assimilation wetland on the western side of the area receiving discharge. Although these seedlings were less than 10 cm dbh (mean dbh was 6.5 cm), we measured dbh at three 20 m x 20m plots delineated within the planted area in 2016 and 2017. Mean stem growth for seedlings in the three plots was 24.3±1.1 g/m²/yr. (Note: In the 2016 annual report, mean stem growth for seedlings was erroneously reported. Actual mean stem growth was 9.5±0.5 g/m²/yr.)

GROWTH STUDIES ~ LITTER FALL (Flora)

	GROWTH STUDIES ~ LITTER FALL (Flora)										
PARAMETER	Wastewate	er Management A	rea (g/m²/yr)	Reference Area (g/m²/yr)							
	UAA Total Dry Weight	Current Total Dry Weight	Difference ¹	UAA Total Dry Weight	Current Total Dry Weight	Difference ¹					
BC ² Treatment	ND ³	942.7±97.5	ND								
BC Mid	ND	714.7±49.0	ND		1						
TM ⁴ Treatment	274.6±15.9	675.2±29.1	1								
Forested Reference				ND	1045.3±23.0	ND					

¹ The difference in the UAA value and the Current value shall be indicated by **NO INCREASE = 0**, **INCREASE = 1**, or **DECREASE = 2**. ²BC = Bayou Chinchuba.

³Not determined.

⁴TM = Tchefuncte Marsh

ANALYSIS OF VARIANCE (ANOVA)

Has there been a significant difference (p=0.05) between the Litter Fall (Flora) in the control and the treatment area?

✓ YES □ NO

If yes, please explain the significance between the control and the treatment areas and outline any corrective actions taken, if needed.

Mean leaf litter was significantly higher in the BC Treatment (942.7 \pm 97.5 g/m²/yr) and Forested Control (1045.3 \pm 23.0 g/m²/yr) sites than in the BC Mid (714.7 \pm 49.0 g/m²/yr) or TM Treatment sites (675.2 \pm 29.1 g/m²/yr) [F(3,19)=8.8209, p=0.0007].

GROWTH STUDIES ~ Marsh Productivity

	GROWTH STUDIES ~ Marsh Productivity										
PARAMETER	Wastewater N	lanagement Area (g/m²/yr)	Reference Area (g/m²/yr)							
	UAA Total Dry Weight	Current Total Dry Weight	Difference ¹	UAA Total Dry Weight	Current Total Dry Weight	Difference ¹					
BC ² OUT	660.0±358.5	195.1±8.1	0								
TM ³ Mid	3779.9±557.6	265.4±30.4	2								
TM Out	2041.2±341.5	290.4±33.6	2								
Marsh Reference				ND^4	131.3±19.9	ND					

¹ The difference in the UAA value and the Current value shall be indicated by **NO INCREASE = 0**, **INCREASE = 1**, or **DECREASE = 2**.

²BC = Bayou Chinchuba.

³TM = Tchefuncte Marsh.

⁴Not determined.

ANALYSIS OF VARIANCE (ANOVA)

Has there been a significant difference (p=0.05) between the productivity (Flora) in the control and the Out site?

✓ YES □ NO

If yes, please explain the significance between the control and the treatment areas and outline any corrective actions taken, if needed.

Mean EOSL was higher at the TM Mid ($265.4\pm30.4 \text{ g/m}^2/\text{yr}$) and TM Out ($290.4\pm33.6 \text{ g/m}^2/\text{yr}$) sites than at the Marsh Reference ($131.3\pm19.9 \text{ g/m}^2/\text{yr}$) site, but no other differences were detected [F(3,12)=8.2049, p=0.0031].

WATER STAGES (Surface Water)

Water height above the soil surface was recorded at ten locations in the Treatment, Mid, and Out sites of both Bayou Chinchuba (BC) and Tchefucnta Marsh (TM) as well as the Marsh Reference and Forested Reference sites.

Site	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
BC Treatment	22.1	0.0	22.6	34.3	28.9	44.3	23.5	22.3	17.6	44.9	19.9	29.1
BC Mid	0.0	0.0	6.8	0.0	0.5	19.7	0.0	2.4	0.0	30.5	3.5	29.7
BC Out	0.0	0.0	5.3	0.0	-1	6.1	0.0	3.3	0.0	26.0	0.0	0.0
TM Treatment	30.1	0.0	32.8	37.0	28.8	34.5	27.0	0.0	37.7	32.5	40.8	71.3
TM Mid	0.0	0.0	1.3	1.6	-1	9.4	0.0	0.0	0.6	27.2	0.0	7.8
TM Out	0.0	0.0	1.3	0.0	-1	18.2	0.0	0.0	0.0	30.8	0.0	0.0
Forested Ref	0.0	0.0	7.4	4.4	0.0	8.2	0.0	0.0	0.4	30.7	0.0	16.2
Marsh Ref	0.0	0.0	7.0	0.0	_1	9.5	0.0	0.0	1.0	31.3	0.0	0.0

Water height (cm) above soil surface.

¹Unable to measure water levels because the field crew could not launch the boat due to high winds and choppy water.

NUTRIENT ANALYSIS I (Surface Water)

Bayou Chinchuba Assimilation Wetland

		NUTRIENT ANALYSIS I (Surface Water)												
		W	astewate	r Treatme	nt Area			Refe	rence Area					
PARAMETER	A	UAA verage (mg/L	-)	A	Current verage (mg/	'L)	lce ¹	UAA Average (mg/L)	Current Average (mg/L)	nce ¹	ANOVA Significant Difference ²			
	Tr	eatment Are	а	т	reatment Ar	ea	Differer	Reference Area	Reference Area	Differei	(p=0.05) YES or NO			
	тмт	MID	OUT	тмт	MID	OUT	_	7.1.00	,					
Total Kjeldahl	0.22±0.06	0.35±0.09	0.20±0.06	8.83±2.94	4.13±2.56	2.38±0.47	1,0.0	0.28 ± 0.07^3	1.32±0.19	1	N,N			
Nitrogen (TKN)								0.59 ± 0.34^4	1.22±0.16	1	N			
Total	1.19±0.30	0.63±0.11	0.40±0.16	1.89±0.63	1.30±0.79	0.84±0.25	0,0,0	0.33±0.10	0.60±0.25	0	N,N			
Phosphorus								0.08 ± 0.03	0.15±0.04	0	Ν			
(12)											1			

¹The difference in the UAA value and the current value shall be indicated by **NO INCREASE=0**, **INCREASE=1**, and **DECREASE=2**.

²Analysis of Variance (ANOVA), a significant difference (p=0.05) between the wastewater treatment area and the control area shall be indicated by YES or NO. ³Bayou Castine Forested Reference site (for Treatment and Mid site comparison). ⁴Tchefuncte Marsh Reference site (for Out site comparison).

Tchefuncte Marsh Assimilation Wetland

NUTRIENT ANALYSIS I (Surface Water)											
	W	astewate	r Treatmen	t Area			Refer	ence Area			
A	UAA verage (mg/l	-)	Current Average (mg/L)			lce ¹	UAA Current Average Average (mg/L) (mg/L)		nce ¹	ANOVA Significant Difference ²	
Tr	eatment Are	a	Tr	eatment Are	a	Differer	Reference Area	Reference Reference Area	Differei	(p=0.05) YES or NO	
ТМТ	MID	OUT	тмт	MID	OUT						
2.33±0.66	1.67 ± 0.41	0.99±0.44	10.37±8.77	1.64±0.54	1.12±0.17	0,0,0	0.28 ± 0.07^3	1.32±0.19	1	N	
							$0.64{\pm}0.20^4$	1.22±0.16	0	N,N	
1.34±0.69	0.25±0.02	0.28±0.23	3.33±0.98	0.58±0.31	0.25±0.02	1,0,0	0.33±0.10 0.07±0.02	0.60±0.25 0.15±0.04	0 0	N N,N	
	Av Tr TMT 2.33±0.66 1.34±0.69	UAA Average (mg/L Treatment Are TMT MID 2.33±0.66 1.67±0.41 1.34±0.69 0.25±0.02	Wastewater UAA Average (mg/L) Treatment Area TMT MID OUT 2.33±0.66 1.67±0.41 0.99±0.44 1.34±0.69 0.25±0.02 0.28±0.23	NUTRIEI Wastewater Treatment UAA Average (mg/L) Average (mg/L) Treatment Area Treatment Area TMT MID OUT TMT 2.33±0.66 1.67±0.41 0.99±0.44 10.37±8.77 1.34±0.69 0.25±0.02 0.28±0.23 3.33±0.98	NUTRIENT ANALY Wastewater Treatment Area UAA Average (mg/L) Current Average (mg/L) Treatment Area Treatment Area Treatment Area Treatment Area Treatment Area Treatment Area TMT MID TMT MID 2.33±0.66 1.67±0.41 0.99±0.44 10.37±8.77 1.64±0.54 1.34±0.69 0.25±0.02 0.28±0.23 3.33±0.98 0.58±0.31	NUTRIENT ANALYSIS I (Su Wastewater Treatment Area UAA Average (mg/L) Current Average (mg/L) Treatment Area Treatment Area TMT MID OUT TMT MID OUT 2.33±0.66 1.67±0.41 0.99±0.44 10.37±8.77 1.64±0.54 1.12±0.17 1.34±0.69 0.25±0.02 0.28±0.23 3.33±0.98 0.58±0.31 0.25±0.02	NUTRIENT ANALYSIS I (Surface V Wastewater Treatment Area UAA Average (mg/L) Current Average (mg/L) Current Average (mg/L) Treatment Area Treatment Area Treatment Area 0,00	NUTRIENT ANALYSIS I (Surface Water) Wastewater Treatment Area Refer UAA Current Average (mg/L) I UAA Average (mg/L) Current Average (mg/L) Treatment Area UAA Average (mg/L) Treatment Area UAA Treatment Area Treatment Area UAA TMT MID OUT TMT MID OUT 2.33±0.66 1.67±0.41 0.99±0.44 10.37±8.77 1.64±0.54 1.12±0.17 0,0,0 0.28±0.07 ³ 1.34±0.69 0.25±0.02 0.28±0.23 3.33±0.98 0.58±0.31 0.25±0.02 1,0,0 0.33±0.10 0.07±0.02	NUTRIENT ANALYSIS I (Surface Water)Wastewater Treatment AreaReference AreaUAA Average (mg/L)UAA Average (mg/L)Current Average (mg/L)QUAA Average (mg/L)Current Average (mg/L)Treatment AreaUAA Average (mg/L)Current Average (mg/L)Current Average (mg/L)Treatment AreaUAA Average (mg/L)Current Average (mg/L)TMTMIDOUTCurrent Average (mg/L)TMTMIDOUTCurrent Average (mg/L)2.33±0.661.67±0.410.99±0.4410.37±8.771.64±0.541.12±0.170,000.33±0.090.25±0.020.28±0.233.33±0.980.58±0.310.25±0.021.0,00.33±0.100.60±0.250.58±0.310.25±0.021.0,00.33±0.020.60±0.250.610.58±0.310.25±0.020.60±0.250.610.610.60±0.250.610.610.610.610.610.61 <th>NUTRIENT ANALYSIS I (Surface Water) Wastewater Treatment Area Reference Area UAA Average (mg/L) UAA Average (mg/L) Treatment Area UAA Average (mg/L) V O O TMT MID OUT TMT NID OUT O C C O O O O O <th< th=""></th<></th>	NUTRIENT ANALYSIS I (Surface Water) Wastewater Treatment Area Reference Area UAA Average (mg/L) UAA Average (mg/L) Treatment Area UAA Average (mg/L) V O O TMT MID OUT TMT NID OUT O C C O O O O O <th< th=""></th<>	

¹The difference in the UAA value and the current value shall be indicated by **NO INCREASE=0**, **INCREASE=1**, and **DECREASE=2**. ²Analysis of Variance (ANOVA), a significant difference (p=0.05) between the wastewater treatment area and the control area shall be indicated by YES or NO. ³Bayou Castine Forested Reference site (for Treatment site comparison). ⁴Tchefuncte Marsh Reference site (for Mid and Out site comparison).

NUTRIENT ANALYSIS II (Surface Water)

Bayou Chinchuba Assimilation Wetland

				NUTF	RIENT ANA	LYSIS II (S	Surface	e Water)			
Ř			Wastewa	iter Treatm	ent Area			Refe			
ARAMETE	UAA Average (mg/L) Treatment Area			-	Current Average (mg/L)			UAA Current Average Average (mg/L) (mg/L)		ference	ANOVA Significant Difference ² (p=0.05)
<u>c</u>	E							Area	Area	Dif	YES or NO
	ТМТ	MID	OUT	ТМТ	MID	OUT					
Ammonia	1.73±0.54	1.26±0.33	0.49±0.16	5.70±1.48	2.28±1.61	0.84±0.29	1,0,0	0.91 ± 0.47^4	0.07±0.02	0	Y,N
(NH₃-N)								0.10 ± 0.06^{5}	0.08±0.03	0	Y
Nitrate+	1.16 ± 0.37	0.64 ± 0.15	0.20 ± 0.05	7.85 ± 4.42	0.05 ± 0.01	0.04 ± 0.01	0,0,0	0.21±0.09	0.50 ± 0.32	0	N,N,
Nitrite-N								$0.10{\pm}0.00$	0.04 ± 0.01	2	N
(NO ₃ +NO ₂ -N)											
Phosphate	ND^3	ND	ND	1.66 ± 0.59	1.31±0.82	0.80±0.45	ND	ND	0.89 ± 0.52	-	N,N
(PO₄-P)								$0.04{\pm}0.02$	0.10±0.03	0	Ν

¹ The difference in the UAA value and the current value shall be indicated by **NO INCREASE=0**, **INCREASE=1**, **DECREASE=2**. ² Analysis of Variance (ANOVA), a significant difference (p=0.05) between the wastewater treatment area and the control area shall be indicated by YES or NO. ³Not determined. ⁴Bayou Castine Forested Reference site (for Treatment and Mid site comparison). ⁵Tchefuncte Marsh Reference site (for Out site comparison).

Tchefuncte Marsh Assimilation Wetland

				NUTRIE	NT ANALY	SIS II (Surfa	ace Wa	ater)			
Ř			Wastewa	ater Treatme	ent Area			Refe	rence Area	I	
RAMETE	A	UAA Average (mg/	/L)		Current Average (mg/	L)	ence ¹	UAA Average (mg/L)	Current Average (mg/L)	ence ¹	ANOVA Significant Difference ² (p=0.05)
PAF	т	reatment Ar	ea	Treatment Area				Reference	Reference	Differ	YES or NO
	ТМТ	MID	OUT	тмт	MID	OUT		Alca			
Ammonia	0.07±0.03	0.31±0.24	0.06±0.02	4.12±3.94	0.11±0.05	0.11±0.04	1,0,0	0.91 ± 0.47^3	0.07±0.02	0	N
(NH ₃ -N)								0.10 ± 0.06^4	0.08±0.03	0	N,N
Nitrate +	0.25±0.15	0.10±0.00	0.10±0.00	7.85±4.42	0.05±0.01	0.04±0.01	0,0,0	0.21±0.09	0.50±0.32	0	N
Nitrite-N (NO ₃ +NO ₂ -								0.10 ± 0.00	0.04 ± 0.01	0	N,N
N)	0.00+0.00	0.00.00	0.0610.00	2.02.1.01	0.40.0.00	0.10.0.00	1.0.0		0.00.0.50		N
Phosphate	0.89 ± 0.36	0.22 ± 0.02	0.06 ± 0.02	3.03 ± 1.01	0.42 ± 0.30	0.13 ± 0.03	1,0,0	ND°	0.89±0.52	-	N
(PO₄-P)								0.04 ± 0.02	0.10 ± 0.03	0	N,N

¹ The difference in the UAA value and the current value shall be indicated by **NO INCREASE=0**, **INCREASE=1**, **DECREASE=2**. ² Analysis of Variance (ANOVA), a significant difference (p=0.05) between the wastewater treatment area and the control area shall be indicated by YES or NO. ³Bayou Castine Forested Reference site (for Treatment site comparison). ⁴Tchefuncte Marsh Reference site (for Mid and Out site comparison). ⁵Not determined.