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A B S T R A C T   

Processed-based biogeochemical mathematical models are powerful tools that are increasingly being used to 
estimate potential carbon sequestration and greenhouse gas (GHG) impacts of management at a landscape level. 
These models can simulate some or all of the processes responsible for carbon sequestration and GHG emissions, 
which can relieve some of the burdensome in-situ monitoring requirements that make many blue carbon projects 
cost-prohibitive. Here we selectively review five publicly available and widely used biogeochemical models 
(MEM, PEPRMT, DNDC, DayCent and FVS) including their current applications and limitations towards blue 
carbon project development. Of the five models, only the DNDC model can be applied to fully account for net 
sequestration as applicable to blue carbon offset methodologies. With further development, the DayCent and the 
combined MEM/PEPRMT models may prove to be applicable. Successful application of such models will address 
one of the biggest barriers to landscape-scale blue carbon project development.   

1. Introduction 

Wetland restoration and conservation provide a wealth of benefits 
such as storm surge reduction, fish and wildlife habitat, water quality 
improvement, recreation, job creation, and carbon sequestration 
(Batker et al., 2010; Jenkins et al., 2010). One of the largest challenges 
to wetland management is finding sufficient financing for coastal 
restoration and conservation that is on the scale that most stakeholders 
agree is needed. Carbon sequestration refers to the removal of atmo-
spheric carbon, in this case by plants (photosynthesis) or other storage 
mechanisms (i.e., soils), which can mitigate greenhouse gasses released 
as a result of changes in land use and the burning of fossil fuels (Lal 
2004; Euliss et al., 2006; Kayranli et al., 2010). Traditionally, the carbon 
sequestered in vegetated coastal ecosystems, specifically mangrove 
forests, seagrass beds, and salt marshes, has been termed ‘blue carbon’ 
(Nellemann et al., 2009; Mcleod et al., 2011), although the authors 
believe this definition should be expanded to include tidally influenced 
cypress-tupelo forests and freshwater marshes (Lane et al., 2017; 
Edwards et al., 2019). Wetland restoration is an effective climate change 

mitigation strategy because it enhances carbon sequestration and avoids 
carbon releases over time that would occur in the absence of restoration 
activities (Pendleton et al., 2012; Lane et al., 2016; Sapkota and White 
2019). Because wetlands sequester large amounts of carbon in soils and 
plants, the growing carbon market provides a potential funding source 
to support restoration and conservation of these valuable ecosystems 
(Murray et al., 2011). However, burdensome in-situ monitoring and 
large monitoring uncertainties associated with measurement constraints 
may add to the already high cost of blue carbon projects, potentially 
making them cost-prohibitive. 

The foundational principle underpinning high-quality offset projects 
is called additionality. Additionality maintains that an offset credit is 
granted only to the extent that the associated amount of emissions 
reduced or sequestered within the project boundary is additional to that 
which would occur without the project, or under business-as-usual 
conditions (Mack et al. 2015; Murray et al. 2007; Murray et al., 2011). 
This requires estimation of the carbon sequestered and GHG emissions 
under the “baseline scenario” (i.e., business-as-usual) and the “project 
scenario” (i.e., the restoration activity), with the net difference being 
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counted towards carbon offsets (Bridgham et al. 2006). 
Processed-based biogeochemical mathematical models are powerful 

tools that are increasingly being used to estimate potential carbon 
sequestration and greenhouse gas (GHG) impacts of management at a 
landscape level (e.g., Alizad et al., 2016; Baustian et al., 2018; Gilhespy 
et al. 2004; Schile et al. 2004; Zhang et al., 2002). These models can 
simulate some or all of the processes responsible for carbon sequestra-
tion and GHG emissions. Models can also be used to compare alternative 
management scenarios intended to reduce emissions, as well as address 
many of the challenges of blue carbon project development. The 
appropriate wetland carbon model would significantly reduce project 
costs by facilitating the practice of “MRV”, which consists of monitoring 
(M), reporting (R), and verification (V) to catalyze landscape-scale blue 
carbon project development that provide multiple co-benefits to society. 
Conventional MRV can be costly and complicated to implement. As-
sessments, auditing and registering tend to be labor-intensive, time 
consuming and require extensive in-situ monitoring to meet carbon 
market uncertainty requirements. 

Most land use change (LUC) project types require the use of a 
process-based biogeochemical model that can predict the greenhouse 
gas fluxes from living systems (De Rosa et al. 2016). These models do not 
usually account for hydrologic features, meaning that a project devel-
oper would need to utilize multiple models, necessitating a broader 
expertise than most project developers possess. As noted in the USDA 
Quantifying Greenhouse Gas Fluxes in Agriculture and Forestry: Methods for 
Entity-Scale Inventory, Section 4–21 states “Improving modeling capa-
bilities that integrate surrounding areas with the wetlands that receive 
surface and subsurface drainage waters will allow for modeling the flows 
of nutrients and organic matter into wetlands and subsequent losses to 
other wetlands beyond the entity’s operation. This type of assessment 
framework is used in several established spatially-explicit hydrologic 
models; the need is to integrate the biogeochemistry. Linked models can 
be used at present; but development of a functionally-integrated system 
is needed to support broad-based applications.” At this time, no 
adequate publicly available biogeochemical model for the Mississippi 
Delta region exists, leaving project developers with no other option than 
to conduct extensive field measurements. 

Overwhelming measurement and monitoring criteria may stifle any 
financial benefits that carbon credits may deliver (Robertson et al., 
2004). Agriculture, forestry and other land-use (AFOLU) projects use a 
combination of modeled and measured data to quantify the emission 
reductions associated with LUC (De Rosa et al. 2016). Forest carbon 
projects can rely on robust data sets to inform allometric equations that 
are universally agreed upon (Pilli et al., 2006). Agricultural carbon 
projects utilize publicly available datasets that require costly model 
validation and geographic calibration, which is just coming to the 
forefront of offset project development. Wetlands offset projects, how-
ever, do not have a single sufficient model that is universally accepted, 
making extensive in-situ monitoring necessary, which can be 
cost-prohibitive. 

Monitoring and measuring requirements for blue carbon projects 
may have made the possibility of scaling this project type unfeasible. To 
address this barrier, a process-based biogeochemical model is needed 
that can simulate the GHG fluxes and net sequestration for wetland 
restoration activities. Such a model would need to be tested at multiple 
sites with differing soils, climates, and land-use and management sce-
narios to establish efficacy, and then once deemed reliable used to 
simulate sequestration and emissions, and derive stock change factors 
(Smith et al. 2020). The development and application of such a model 
would reduce: 1) the uncertainty associated with measurement con-
straints, 2) the cost of monitoring, and 3) safety issues associated with 
on-the-ground monitoring of inaccessible areas. Deterministic or process 
modeling provides the ability to simulate the physical, chemical and 
biological processes that comprise the exchange of greenhouse gasses 
between the atmosphere, vegetation and soil (Lloyd et al., 2013). In 
wetlands, these models need to be extended to include microbial activity 

processes responsible for CH4 production and oxidation, water table 
depth, seasonal changes in wetland expanse, as well as lateral exchanges 
of carbon (C) and nitrogen (N) between wetland and surrounding areas. 

This paper serves as a review of five publicly available and widely 
used ecosystem models that show promise towards being applied to blue 
carbon projects including their current applications and limitations. The 
ultimate goal is to provide guidance for future spatial biogeochemical 
model development or refinement that can be used to estimate various 
carbon pools or fluxes (i.e., soil organic carbon, biomass, greenhouse 
gasses) from fresh, brackish and saltwater wetlands in the Mississippi 
delta for various baseline and restoration scenarios. This will address 
one of the biggest barriers to landscape-scale blue carbon project 
development in the Mississippi delta. 

2. Model analysis 

Here we discuss five publicly available process-based models 
currently being used, or show promise to be applied, to estimate net 
carbon sequestration: the MEM (Marsh Equilibrium Model), the 
PEPRMT (Peatland Ecosystem Photosynthesis, Respiration, and 
Methane Transport) model, the DNDC (Denitrification-Decomposition) 
model, the DayCent model, and the FVS (Forest Vegetation Simulator) 
model (Table 1). The Marsh Equilibrium Model (MEM) predicts how 
aboveground biomass and surface elevation of salt marshes respond to 
projected sea-level rise. The PEPRMT model estimates net ecosystem 
exchange of CO2 and CH4. The PEPRMT model is currently being merged 
with the MEM (MEM/PEPRMT) to account for accretion and better ac-
count for net sequestration, but is only designed for non-forested 
emergent wetlands (salt to fresh) and cannot be applied to forested 
systems such as mangroves and cypress. The DNDC model is a process- 
based model simulating C and N dynamics in forested and emergent 
wetland ecosystems, including mangrove forests (Dai et al., 2018a;b), 
but has not been applied to cypress forests and can have high levels of 
uncertainty under some conditions (Gilhespy et al., 2014). The DayCent 
model is a daily time step version of the Century biogeochemical model, 
and simulates fluxes of C and N between the atmosphere, vegetation, 
and soil. The FVS model projects the growth and development of forest 
stands with application of various silvicultural treatments. 

The time step used by empirical models has implications for data 
collection and input. A daily time step is used by the PEPRMT, DNDC, 
and DayCent models (Table 1), which allows for the direct use of field 
observations of greenhouse gas emissions to calibrate and evaluate the 
model, and to answer questions about climatic change and management 
practices (Zhang et al., 2002). The MEM model uses an annual timestep, 
which correlates to field measurements of emergent biomass and surface 
elevation changes, which are normally measured once per year. The FVS 
model has the longest time step of 5 or 10 years for tree growth, how-
ever, this period of time correlates with the five-year monitoring interval 
mandated by most carbon registries, such as the American Carbon 
Registry (ACR). Below are more detailed descriptions of the models. 

2.1. MEM (Marsh equilibrium model) 

The Marsh Equilibrium Model (MEM) is a one-dimensional mecha-
nistic model with and annual time step that incorporates feedbacks 
of organic and inorganic inputs to project accretion and wetland 
surface elevations under varying sea-level rise and sediment availability 
scenarios (FitzGerald and Hughes, 2021). Combining a simple 
spreadsheet-based model interface with a fast-processing time, the MEM 
is accessible for a broad array of end-users. Additionally, the MEM can 
be run using upland elevations that are not currently inundated to 
examine the timing and extent of marsh migration with a given rate of 
sea level rise (Schile et al., 2014). Physical inputs for the model include 
the initial rate of sea level rise, mean sea level, mean higher high water 
(MHHW), suspended sediment concentration, and starting marsh 
elevation (Fig. 1). Biotic inputs include the minimum and maximum 
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elevation for marsh vegetation, the peak aboveground biomass and the 
elevation at which it occurs, root to shoot ratio, organic matter decay 
rate, percent of refractory carbon, belowground turnover rate, and 
maximum rooting depth of 95% of the roots. Byrd et al. (2016) used 
values derived from remote sensing to provide inputs of suspended 
sediment concentration and aboveground peak biomass. 

The model assumes that plant productivity is constrained by upper 
and lower elevation limits and there is an optimum elevation for growth 
within the tidal frame (Morris et al., 2002). MEM relies on the idea that: 
1) marshes either increase or decrease biomass production in relation to 
changes in sea-level, 2) a combination of biomass and inundation time 
influences the settling of suspended inorganic sediment and 3) these two 
factors influence changes in marsh elevation (Morris et al., 2002). Plant 
productivity varies with relative elevation in a parabolic response across 
a limited range of the tidal frame, with peak productivity occurring at an 
optimal mid-elevation point (Morris et al., 2013; 2016). An increase in 
the rate of SLR may cross a threshold whereby relative elevation be-
comes sub-optimal for growth and accretion rates are insufficient to 
maintain elevation, leading to elevation loss (Morris et al., 2002). 

Since the MEM only forecasts changes in elevation at a single point, it 
is often coupled with another spatially-explicit landscape scale model in 
order to accurately capture the dynamics of a marsh system. For 

example, Schile et al. (2014) coupled the MEM with a high spatial res-
olution LiDAR-based digital elevation model to estimate changes in 
marsh elevation and extent, including upland migration, under a variety 
of sea level rise and suspended sediment concentration scenarios. 
Several researchers have coupled the MEM with two-dimensional hy-
drodynamic models to forecast the fate of coastal wetlands in response 
to sea level rise (Mudd et al., 2004; Hagen et al., 2013; Alizad et al., 
2016), while D’Alpaos et al. (2006) coupled the MEM to a hydrodynamic 
model to investigate the geomorphology of tidal channels. 

The strengths of the MEM model include the ability to forecast 
saltmarsh productivity and relative elevation, and decomposition rates 
can easily be converted to CO2. The model was recently revised to 
include mangroves, and allows for mangrove growth to maturity, 
episodic storm inputs of sediment, or thin layer sediment applications 
(TLP). Therefore, this model can be used to quantify carbon sequestra-
tion in saltmarshes and mangroves and in some instances prevented loss. 
For example, the user can by trial and error optimize the periodic 
application of sediment by TLP to maximize carbon sequestration and 
resilience to sea-level rise. The model makes a distinction between 
sustained carbon sequestration, defined as the annual increase in soil 
carbon standing stock, and sequestered carbon–the actual standing stock 
of organic matter or organic carbon in soils. Standing stock includes 

Table 1 
Models included in this analysis, model outputs, wetland types, data gaps, skill level necessary to run the model, and time step used by the model.  

Name Model Outputs Wetland Type Data 
Gaps 

Skill Level 
Necessary  Time Step 

MEM AGB, BGB, SOC Surface Elev. Salt Marshes & Mangroves No GHGs Easy Annual 
PEPRMT CO2 & CH4 Freshwater Peat (CA) No AGB, 

No SOC, 
No N2O 

Difficult daily 

MEM/PEPRMT AGB, BGB, Surface Elev., CO2 & CH4 Non-forested Emergent No N2O Difficult annual/daily 
DNDC AGB, BGB, SOC, CO2, CH4, N2O, NO, N2 NH3 Forested & Emergent Currently no cypress application Difficult daily 
DayCent AGB, BGB, SOC 

CO2, CH4, N2O, NOx 

Rice Paddy Currently not applicable to wetlands Moderate daily 

FVS AGB 
BGB 

Forested No SOC, 
No GHGs 

Moderate 5 or 10 years 

Aboveground biomass (AGB), belowground biomass (BGB), soil organic carbon (SOC), greenhouse gasses (GHGs). 

Fig. 1. Screenshot of the MEM available online.  
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living and labile organic matter. The live standing stock in a salt marsh 
or mature mangrove forest is a constant and does not add to carbon 
sequestration, and labile organic matter will decay. Decaying organic 
matter does not contribute to sequestration, but it is part of the standing 
stock. Sustained carbon sequestration is defined as the annual input to 
soil of refractory or stable organic matter, which is a function of the 
turnover of roots and rhizomes, and the lignin concentration in live 
organic matter. If the salinity is input the model can also estimate CH4 
(as in Poffenbarger et al. 2011; Jim Morris personal communication). 

In general, this model the ability to fully account for all GHGs (i.e., 
N2O and CH4). A weakness of MEM is that it does not allow for net 
erosion. Erosion of the marsh platform is not explicitly included in the 
model. Neither can it simulate edge erosion. The model can simulate a 
drowning marsh overwhelmed by rising sea level, but the model marsh 
cannot drown by erosion in the absence of rising water level. Further-
more, the publicly available model version does not allow for temporal 
changes in suspended sediment concentration, but scenarios such as that 
can be coded by the developer. 

The MEM interface is relatively simple and does not require an 
extensive background to apply the model. It was designed to be parsi-
monious. One aspect of carbon project development is determining the 
“permanence” of a restoration activity (i.e., the risk that a carbon sink 
having delivered emissions reductions may deteriorate or become 
depleted over the long term). Given adequate elevation data, this model 
is ideal for determining the sustainability of a given wetland ecosystem, 
including the period of time before submergence and when deterioration 
of the carbon sink begins to take place. However, detailed elevation data 
are rare and may be expensive to acquire. An executable version of MEM 
with an Excel user interface is available upon request, and an older 
version of MEM is publicly available online at: http://129.252.139.22 
6/model/marsh/mem2.asp 

2.2. PEPRMT (Peatland ecosystem photosynthesis, respiration, and 
methane transport) 

The Peatland Ecosystem Photosynthesis, Respiration, and Methane 
Transport (PEPRMT, pronounced “peppermint”) model, is a process- 
based biogeochemical model that predicts CO2 and CH4 exchange in 
peat soil freshwater wetlands and rice paddies using a daily time step 
(Fertitta-Roberts et al., 2019). The model makes the assumption that 
N2O emissions are insignificant due to fully saturated soils emitting N2 
(Patty Oikawa personal communication). It is designed to simulate the 
complex biogeochemistry of peatlands using few inputs and simple 
model structure (Fig. 2). Originally developed for the Sacramento-San 
Joaquin Delta, California, it is cited in The Restoration of California 
and Coastal Wetlands methodology by the American Carbon Registry 
(ACR), and is being modified to be used in tidal marshes (Patty Oikawa 
personal communication). It can estimate emissions from both natural 
and restored wetlands. The biogeochemistry and greenhouse gas flux 
dynamics of restored wetlands are very different compared to natural 
undisturbed wetlands since large amounts of soil may be moved in the 
restoration process, likely exposing previously inaccessible carbon, 
leading to high greenhouse gas fluxes (Oikawa et al., 2017). 

The model requires leaf area index (LAI), meteorological data, initial 
soil organic carbon content (SOC), and water table height. Carbon flux 
dynamics in the PEPRMT model are sensitive to water table height, 
substrate availability, leaf area, temperature, and light (Fertitta 2017). 
The model simulates three carbon (C) pools in order to predict 
ecosystem CO2 and CH4 production: recently fixed labile C, C stored in 
plant biomass, and older more recalcitrant soil organic carbon (SOC; 
Oikawa et al., 2017). The model simulates the top meter of soil and 
tracks the water level in the soil horizon, which governs CO2 and CH4 
emissions. Whenever the water table falls below the soil surface, CH4 
production is strongly inhibited (Fertitta-Roberts et al., 2019). 

The PEPRMT model is ideal for use in carbon market systems that 
calculate CO2 and CH4 exchange on an annual basis using measured 

inputs, but the model is not suitable for estimating long-term C storage 
in soils. In order to predict long-term C storage, the model would require 
additional data such as SOC measurements and soil C turnover times in 
order to constrain model parameters that predict soil C pools over long 
time scales (Oikawa et al., 2017). Net CO2 exchange is calculated as the 
difference between photosynthesis and respiration, meaning that the net 
uptake of CO2 by the system is either being stored in biomass or lost 
laterally. This would include below- and aboveground biomass, but 
would not differentiate how the carbon is distributed across these two 
pools. The PEPRMT model also provides rigorous estimates of uncer-
tainty in CO2 and CH4 fluxes as it is parameterized using a model-data 
fusion approach with high resolution ecosystem scale GHG flux mea-
surements (Oikawa et al., 2017). Highly constrained estimates of un-
certainty are helpful when participating in carbon markets, as 
unconstrained uncertainty can lead to conservative estimates of uncer-
tainty with associated credit deductions. 

This model was successfully applied to the first wetland restoration 
carbon offset project in the United States located within the Sacramento- 
San Joaquin Delta that converted agricultural lands back to wetlands (i. 
e., flooding lands previously used for agriculture). This project reduces 
GHG emissions by; (1) halting the oxidation of organic soils due to 
farming that results in the release of CO2 and CH4, and (2) stopping CH4 
and N2O emission from fertilization and grazing animals existing under 
the baseline scenario. The methodology developed for this project spe-
cifically uses the PEPRMT model to estimate CO2 and CH4 emissions.1 

The PEPRMT model is publicly available at https:// github.com/ 
pattyoikawa/PEPRMT.git. However, currently the model requires pro-
fessional coding skills which is beyond the expertise of most project 
developers. Other limitations of the model include the inability to 
quantify aboveground biomass, soil organic carbon, and N2O. 

The PEPRMT model is currently being merged with the MEM to ac-
count for accretion and better account for net sequestration (personal 
communication with Patty Oikawa). The merged MEM/PEPRMT model 
uses MEM to simulate soil organic carbon and accretion and relies on soil 
core data from the Coastal Carbon Research Coordination Network 
(CCRCN) for model validation2;). The MEM/PEPRMT model is being 
designed for non-forested wetland systems ranging from fresh to salt-
water. Currently there are two sites in Louisiana that this model is being 
applied. One with the assistance of the United States Geological Service 
(USGS) in a floating freshwater tidal marsh influenced by the Davis Pond 
river diversion and the other site is at a brackish saltmarsh. The model 
does not measure N2O and assumes that this source is negligible, which 
may require further scientific justification by the carbon standard 
dependent upon the specific methodology the model would be applied 
to. 

The MEM/PEPRMT model validation is believed to be applicable to 
non-forested marshes throughout Louisiana and should be available in 
the near future. Currently, this model is not publicly available but there 
is an intent to make this model public. It is currently unknown the level 
of expertise that would be required to operate the model. The main gap 
of this model is that it cannot be applied to forested systems such as 
mangroves and bald cypress. However, this model shows promise to be 
applied in non-forested wetland systems. 

2.3. DNDC (DeNitrification-DeComposition) model 

The DNDC (DeNitrification DeComposition) model was first 
described by Li et al. (1992) as a process-orientated biogeochemical 
model for simulating N2O and SOC change from agricultural soils in the 
U.S (Gilhespy et al., 2014). The DNDC model has incorporated a suite of 
biogeochemical processes (e.g., decomposition, fermentation, ammonia 

1 https://americancarbonregistry.org/carbon-accounting/standards-metho 
dologies/restoration-of-california-deltaic-and-coastal-wetlands  

2 https://serc.si.edu/coastalCarbon 
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volatilization, nitrification, denitrification), as influenced by the soil 
environment, to predict C and N turnover in agricultural soils. The 
model can run from a year to several hundred years with a primary time 
step of 1 day. During the past 30 years the original DNDC model has 
been modified and adapted to simulate other ecosystems, including 
wetlands. 

The DNDC model was developed for wetlands by integrating two 
existing models, namely, PnET-N-DNDC and FLATWOODS (Gilhespy 
et al., 2014), to predict CO2 and CH4 emissions from wetland ecosystems 
(Zhang et al., 2002). Several new functions were developed for the 

DNDC model to represent the unique features of wetland ecosystems, 
such as water table dynamics, growth of mosses and herbaceous plants, 
and soil biogeochemical processes under anaerobic conditions (Zhang 
et al., 2002). Forested wetlands can be modeled using the Forest-DNDC 
model, which simulates forest biomass dynamics by tracking the growth 
of upperstory, understory (e.g., bushes or shrubs), and ground-level 
vegetation (e.g., moss, herbaceous plants, or lichens) based on their 
competition for light, water, and N (Li et al., 2004). 

Model inputs primarily include initial conditions (e.g., plant 
biomass, soil physical and chemical properties, water table position), 

Fig. 2. The conceptual basis for the PEPRMT model. Model inputs and drivers—air temperature (Tair), absorbed photosynthetically active radiation (APAR), water 
table height (WT), labile soil C, and soil organic carbon (SOC)—are shown in white boxes. Model outputs are shown in gray boxes. Processes and pools modeled 
within PEPRMT are shown in pink and orange boxes, respectively (from Oikawa et al., 2017). 

Fig. 3. The conceptual structure of the DNDC model for wetlands (from Lloyd et al., 2013).  
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hydrological parameters (e.g., lateral inflow/outflow parameters), 
vegetation phenological and physiological parameters (e.g., maximum 
photosynthesis rate and its partitioning to shoot and root, respiration 
rate), and climate drivers (e.g., daily maximum and minimum temper-
ature, precipitation, solar radiation). Model outputs primarily include C 
pools and fluxes (e.g., C in plants and soil, photosynthesis, plant respi-
ration, soil decomposition, CH4 emissions, and net ecosystem produc-
tivity), N pools and fluxes (e.g., N in plants and soil, and emissions of N 
gasses), and soil thermal/hydrological conditions (e.g., soil moisture, 
water table position, water fluxes, soil temperature profile). 

The DNDC model consists of four interacting sub-models that simu-
late water table dynamics, soil temperature, plant growth of wetland 
species and the anaerobic biogeochemical processes in wetlands (Fig. 3; 
Zhang et al., 2002). Li et al. (2004) modified the ‘anaerobic balloon’ 
concept to integrate the Nernst and Michaelis–Menten equations, 
enabling the modeling of soils where aerobic and anaerobic microsites 
exist simultaneously, and the prediction of both nitrification and deni-
trification in the soil at the same time. In recent years, the model has 
been further improved to simulate C and N dynamics in northern peat-
lands (Zhang et al., 2012; Deng et al., 2014, 2015, 2017) and mangrove 
forests (Dai et al., 2018a,b) by integrating new processes to represent 
these systems. The primary strength of the DNDC model is its inclusion 
of most of the carbon pools of interest, however, it currently cannot 
model the growth of cypress trees, and the model itself is rather 
complicated, requiring expertise and computational skills. 

2.4. DayCent 

The DayCent model is a version of the Century ecosystem model but 
with a daily time step, and is used to simulate ecosystem responses to 
changes in climate and agricultural management practices in crop, 
grassland, forest and savanna ecosystems (Necpálová et al., 2015). The 
DayCent model was developed to permit more realistic estimates of 
greenhouse gas exchange between the soil and the atmosphere (Parton 
et al., 1998, 2001). It has been used to estimate N2O emissions from 
agricultural soils for the US National Greenhouse Gas Inventory (Olan-
der and Haugen-Kozyra 2011; USEPA 2021), and the USDA relies on the 
Century and Daycent models to estimate direct and indirect GHG 
emissions for major croplands in the United States (USGS 2010). Day-
Cent consists of sub-models for soil water content and temperature by 
layer, plant production and allocation of net primary production (NPP), 
decomposition of litter and soil organic matter (SOM), as well as carbon, 
nitrogen, phosphorus and sulfur cycling, N gas emissions from nitrifi-
cation and denitrification, and CH4 formation from unsaturated soils 
(Fig. 4). Methane emissions from saturated rice paddy soils have also 
been added (Cheng et al. 2013), and work is currently being done to use 
the DayCent to model natural wetlands systems (personal communica-
tion Ellen Herbert, Ducks Unlimited). Ducks Unlimited and its partners 
are collecting data on carbon stocks of wetland soils as well as vegeta-
tion carbon levels at 250 wetland sites across a 15-state area in the 
central united states. The primary strengths of the DayCent model are its 
inclusion of all of the carbon pools of interest and relative ease of use 
compared to the DNDC and PEPRMT models. The DayCent model can be 
accessed by request through: century@colostate.edu. 

Daily maximum/minimum temperature and precipitation, timing 
and description of management events (e.g., fertilization, tillage, har-
vest), soil texture, vegetation productivity and root:shoot ratios, and 
land cover/use data are needed as model inputs. The plant growth sub- 
model simulates plant productivity as a function of genetic potential, 
phenology, nutrient availability, soil water and temperature, and solar 
radiation (Necpálová et al., 2015). Nutrient supply is a function of soil 
organic matter (SOM) decomposition and external nutrient additions 
(Del Grosso et al. 2005). SOM is simulated in the top 20 cm soil layer as a 
sum of dead plant matter and three SOM pools divided on the basis of 
decomposition rates, which are controlled by substrate availability, 
substrate quality (lignin content, C/N ratio), soil moisture/oxygen 

concentrations, temperature and pH (Del Grosso et al. 2008a; Malone 
et al., 2015). The SOM pool is divided into active (0.5–1.0 yr), slow 
(10–50 yr), and passive (1000–5000 yr) pools based on residence time 
(Weiler et al., 2018). 

The methanogenesis sub-module simulates CH4 production based on 
carbon substrate supply for methanogens, which is derived from 
decomposition of SOM and root rhizodeposition, and the impact of 
environmental variables. Parameters controlling methanogenesis 
include soil texture, soil pH, redox potential (Eh), soil temperature, 
climate and management practices (Cheng et al. 2013). Plant-mediated 
emissions account for nearly 90% of CH4 emissions from soil, while a 
smaller proportion of the CH4 is emitted via ebullition, which occurs 
when the soil CH4 concentration exceeds a critical state that leads to 
formation of bubbles (Cheng et al. 2013). 

The trace gas sub-model of DayCent simulates soil N2O and NOx (i.e., 
NO and NO 2 ) gas emissions from nitrification and denitrification pro-
cesses. The model includes legacy effects such that N added to the sys-
tem one year may be taken up by vegetation and returned to the soil in 
organic form during that year, then remineralized and emitted as N2O in 
following years (Del Grosso et al. 2005). The sub-model assumes that 
nitrification and denitrification both contribute to N2O and NOx emis-
sions, but that NOx emissions are due mainly to nitrification. N2O 
emissions from nitrification are calculated as a function of modeled soil 
NH4 concentration, water filled pore spaces (WFPS), temperature, pH, 
and texture, while N2O emissions from denitrification are a function of 
soil nitrate concentration, WFPS, heterotrophic respiration and soil 
texture (Del Grosso et al. 2008a;b). NOx emissions are calculated as a 
function of soil bulk density, field capacity, and WFPS that influence gas 
diffusivity (Parton et al., 2001). 

2.5. FVS (Forest vegetation simulator) 

The Forest Vegetation Simulator (FVS) is the U.S. Forest Service’s 
nationally supported framework for forest growth and yield modeling, 
particularly with respect to the application of silvicultural treatments 
(USFS 2002, 2020). At its core, FVS is an individual-tree, dis-
tance-independent growth model; it predicts changes in tree diameter, 
height, crown ratio, and crown width, as well as mortality, over time 
(USDA Forest Service 2011). FVS evolved from a relatively focused 
growth and yield model, the Prognosis Model for Stand Development, 
and growth equations were developed for other parts of north America. 
Geographically specific versions of FVS are called variants. Twenty-two 
FVS variants have been developed for the forested areas of the United 
States and for part of British Columbia, Canada (Fig. 5). The ‘Southern 
(SN)’ variant, released in 2001, includes cypress and water tupelo for-
ests. Ecological Unit Codes (EUC) of the Southern variant include cate-
gories such as Coastal Marsh and Island, Tidal Area, Gulf Coastal 
Lowlands, and LA Gulf Coast Marshes and Inland Bays (Appendix A of 
USFS 2008). The FVS software package is freely available at: http:// 
www.fs.fed.us/fmsc/fvs/. 

The FVS models individual trees with key state variables for each tree 
being density, species, diameter, height, crown ratio, diameter growth, 
and height growth (Crookston and Dixon 2005). Key variables for each 
sampling site include slope, aspect, elevation, density, and a measure of 
site potential. If these values are not provided, default values are used. A 
distinguishing feature of FVS is its ability to automatically calibrate 
internal models to reflect local deviations from the regional growth 
trends represented in the variant (Crookston and Dixon 2005). If three or 
more tree records for a species have measured heights, the model pa-
rameters of the height-diameter function for that species are adjusted. 
Time steps are generally between 5 and 10 years long, and the total 
projection is between a few years and several hundred years. 

To meet increased demand for forest carbon information, a tool was 
developed to calculate forest carbon stocks. Two carbon reports can now 
be requested: the Stand Carbon Report and the Harvested Carbon Report 
(USDA Forest Service 2011). The Stand Carbon Report includes the 
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major carbon pools as defined by the U.S. Carbon Accounting Rules and 
Guidelines and the IPCC Good Practice Guidance: aboveground live tree, 
belowground live tree (coarse roots), belowground dead tree, standing 
dead trees, down dead wood, forest floor, and understory (shrubs/ 
herbs). The Harvested Carbon Report tracks the fate of carbon in har-
vested merchantable material, including salvaged logs. Most carbon 
registries require that forest carbon storage be ‘additional’, or 
above-and-beyond business-as-usual (BAU), to receive emission offsets. 
Using data from an appropriately designed forest inventory, managers 
can generate baseline carbon stock estimates by simulating the BAU 
management actions for a given stand, and carbon stock estimates can 
be made for alternative management scenarios for comparison. 

A major limitation of the FVS was that it was not directly sensitive to 
environmental changes that influence tree growth such as increasing 
temperatures, changes in rainfall, and changes in atmospheric CO2, 

making the model insensitive to climate change (Crookston and Dixon 
2005). This changed with the development of the Climate-FVS, a 
modification to the FVS designed to take climate change into account 
when predicting forest dynamics at decadal to century time scales 
(USDA Forest Service 2014). The Climate-FVS uses individual tree 
climate viability scores, which measure the likelihood that the climate at 
a given location and at a given point in time is consistent with the 
climate recorded for species’ contemporary distribution, and adjusts 
growth and mortality accordingly. Now the biggest limitation of the FVS 
model is that it does not model the soil carbon pool, nor are there esti-
mates of greenhouse gasses. 

The FVS software package is freely available at: http://www.fs.fed. 
us/fmsc/fvs/. modeling would benefit from an experienced user, but 
special expertise is not necessary and there are several comprehensive 
Users Manuals available. 

Fig. 4. Flow diagram for the DayCent ecosystem model (modified from Parton et al., 2001).  

Fig. 5. Geographic variants of the Forest Vegetation Simulator.  
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3. Discussion 

3.1. Carbon model limitations 

Of the five models included in this analysis, the DNDC model in-
cludes the most carbon pools of interest and is currently the only model 
that has potential to be applied to fully account for net sequestration as 
applicable to blue carbon offset methodologies. The DayCent model and 
the MEM/PEPRMT combined model may prove with time and devel-
opment to be applicable. There are limitations and uncertainties for 
almost all wetland carbon models; including uncertainties in biological 
processes of relevant parameters (as discussed in Deng et al., 2017), and 
limitations in simulating landscape interactions and evaluation of 
regional outputs. Uncertainties associated with these limitations require 
associated credit deductions that can ultimately become cost-prohibitive 
to a project. In general, these limitations need to be addressed but are 
beyond the scope of carbon market applications to blue carbon projects. 

The MEM is most applicable to projecting the interaction of sea level 
rise and wetland surface elevation to aboveground biomass in the 
baseline and project scenarios, but does not quantify carbon sequestra-
tion in a way that is applicable to existing methodologies. However, this 
model is applicable towards forecasting the impacts of sea level rise for 
baseline and project scenarios. The uncertainty in data inputs to coastal 
forecasting models such as MEM can limit prediction accuracy and as a 
result the usefulness of models in management and planning (Byrd et al., 
2016). Consequently, accurate information on baseline conditions of 
tidal marshes across the modeling spatial extent is essential for gener-
ating realistic forecasts, as baseline conditions set the starting trajectory 
of change. 

The MEM can predict above-ground biomass (AGB), and by exten-
sion below ground biomass (BGB) using a root:shoot ratio for salt 
marshes and mangroves, leaving a knowledge gap for freshwater 
forested and emergent wetlands. The PEPRMT model was developed to 
predict CO2 and CH4 from peat wetlands in California, but when com-
bined with the MEM is applicable to all non-forested wetlands (Patty 
Oikawa personal communication). However, it does not account for 
N2O. The DNDC model predicts greenhouse gas emissions from wet-
lands, though estimates of N2O in the absence of any additional N 
fertilization have been questioned by some modeling experts (Gilhespy 
et al., 2014). The DayCent model predicts all necessary parameters, but 
is not yet applicable to deltaic wetlands. The Forest Vegetation Simu-
lator (FVS) effectively models AGB of trees in freshwater forests, and a 
root:shoot ratio can be applied to estimate BGB, but the model does not 
account for greenhouse gasses or hydrology. 

3.2. Carbon market requirements and implications 

It is important for model developers to understand carbon market 
requirements to develop models that address the identified limitations, 
fully quantify net carbon sequestration, and are approved for application 
towards blue carbon project development. A discussion of carbon mar-
ket requirements is provided as guidance to model developers. 

Currently the carbon market is comprised of both compliance and 
voluntary emissions trading schemes. These emissions trading programs 
are collectively referred to as carbon markets. Carbon market standards 
and registries typically administer the programs and ensure the credi-
bility of emission reduction projects. Examples of voluntary carbon 
market registries include the American Carbon Registry (ACR), the 
Climate Action Reserve (CAR), and the Verified Carbon Standard (VCS, a 
program of Verra). Methods to develop a carbon offset align with in-
ternational standards (ISO 14,064–2) and are detailed in what is referred 
to as a carbon protocol or methodology depending on the offset registry 
(Sapkota and White 2020). These carbon market standards and registries 
have specific requirements for the use of models both at the overall 
standard level and at the more specific protocol or methodology level. 

Protocols and methodologies typically undergo some combination of 

public consultation, peer review and stakeholder input to provide a 
transparent, rigorous scientific framework and accounting procedure for 
the development, verification, and monitoring of offset projects (Gil-
lenwater et al. 2007). A protocol or methodology addresses each aspect 
of the project, such as eligibility criteria including temporal and spatial 
boundaries, baseline establishment, monitoring of emission sources, 
sinks and pools, QA/QC methods, risk accounting, and quantification of 
emission reductions, which pending verification become carbon offsets. 
The protocol becomes the foundation for third-party validation and 
verification in accordance with standardized and transparent market 
practices. Overall, the protocol works in concert with programmatic 
requirements set by the registry to ensure that credits issued will meet 
the underlying principles that offsets are real, “additional”, quantifiable, 
verifiable, permanent and enforceable. 

There are many commonalities across the multiple standards on the 
use of models for carbon project development. Generally, models must 
be specified or meet eligibility criteria in an approved protocol or 
methodology in order to be applied by a carbon project developer. In 
addition, the outputs of the model must align with the parameters and 
equations of a given methodology to be applied. Therefore, models need 
to be developed in concert with carbon market and methodological re-
quirements. Currently, the most viable protocols for blue carbon are 
within ACR and VCS. Below are requirements of models for ACR and 
VCS methodologies. 

For ACR, process-based biogeochemical models and empirical 
models may be approved for use under specific ACR-approved AFOLU 
methodologies to quantify emissions (ACR 2020). To be applicable, a 
model must have the potential to model emissions from the relevant 
practice change(s) with consideration of relevant factors; have been 
accepted in a peer reviewed scientific publication and/or been published 
by a government agency; and allow for the calculation of uncertainty in 
predicted emissions. ACR may also approve other models on a 
case-by-case basis via an ACR-lead peer review process. ACR has a list of 
factors that must be considered, where relevant such as atmospheric 
factors (i.e., nitrogen concentration in rainfall), daily meteorology, soil 
conditions, hydrology, etc. (ACR 2020). 

ACR also requires that there be a study or studies that demonstrate 
that the use of the selected model is appropriate for the relevant IPCC 
climactic region in which the project is situated. The IPCC AFOLU 2006 
guidelines note that an appropriate model should be capable of repre-
senting the relevant management practices and that the model inputs (i. 
e., driving variables) are validated from country- or region-specific lo-
cations that are representative of the variability of climate, soil, and 
management systems in the country (ACR 2020). Where a project con-
sists of multiple sites, the model must be validated for at least 50% of the 
total project area relevant to the restoration practice where the project 
area covers up to 50,000 ha; or at least 75% of the total project area 
where the project area relevant to the restoration practice covers more 
than 50,000 ha. In addition, the area for which the model is validated 
generates at least two-thirds of the total project emission reductions 
(ACR 2020). One methodology within ACR added further requirements 
that models must also be parameterized, calibrated and validated for a 
specific scenario, project type, and area, and should preferably use at 
least 2 years of ecosystem flux data .3 

With respect to the use of models under VCS, the use of models must 
be specified in the methodology applied by a project. All of the current 
VCS blue carbon methodologies allow for models to be used in place of 
field measurements to estimate certain parameters (e.g., soil organic 
carbon or expected submergence in the baseline scenario) (VCS 2019). 
No methodologies are necessarily built around a specific model although 
the MEM model is referred to in one wetland methodology (VCS 2019). 
VCS requires that models be publicly available from a reputable and 

3 https://americancarbonregistry.org/carbon-accounting/standards-metho 
dologies/restoration-of-california-deltaic-and-coastal-wetlands 
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recognized source such as the IPCC or government agency; parameters 
chosen based on studies by appropriately qualified experts; reviewed 
and tested by an appropriate organization or an appropriate peer review 
group; have comprehensive and appropriate requirements for esti-
mating uncertainty; be calibrated by parameters such as geographic 
location and local climate data, and use conservative assumptions and 
parameters that are likely to underestimate GHG emission reductions or 
removals. These criteria, however, are targeted at more complex models 
and may not be necessary for simpler models. Some VCS methodologies 
have specific requirements such as validating models with direct mea-
surements from a proxy area that exceed the general VCS requirements. 

Though measurement approaches for ACR and VCS are broadly 
similar, there are differences that can affect the cost of model develop-
ment and on-the-ground monitoring of projects. The VCS methodologies 
allow the use of several notable default factors for the calculation of 
emissions. Default values for CH4 are offered for areas with mean sa-
linities >18 ppt and >20 ppt. Default values for N2O are offered for areas 
with mean salinities between 5 ppt and 18 ppt, and for when they are 
>18 ppt, with values given for both open water and wetland sites. Also, 
sites in Louisiana can use default factors for N2O emissions in fresh to 
saline habitats that are not receiving nutrient inputs. 

For both ACR and VCS, existing methodologies may go through a 
revision process to modify a methodology to account for the use of a 
model or entirely new methodologies may be developed to apply models 
and advanced technologies such as artificial intelligence (AI), machine 
learning (ML) and remote sensing (RS) such as lidar. These emerging 
technologies show potential to facilitate the scaling up, cost- 
effectiveness, and accuracy of MRV. For instance, machine learning, 
remote sensing, and scientific modeling may help improve the accuracy 
of accounting for net sequestration in wetlands and reduce burdensome 
on-the-ground monitoring and large monitoring uncertainties that make 
many blue carbon projects cost-prohibitive (Brown et al., 2005; Heu-
velink et al., 2020; Lloyd et al., 2013). However, it remains uncertain 
whether these technologies may ever be entirely relied upon without 
additional or complementary ground-truthing due to the complexity of 
wetland ecosystem data required for MRV. This will also require scien-
tific knowledge gaps to be addressed, which based on our review of the 
scientific literature for the Mississippi Delta include: 1) baseline CH4 and 
N2O emissions from fresh, brackish, and saltwater emergent wetlands; 
2) soil sequestration and N2O emission rates for wetlands receiving 
hydrologic restoration; and 3) CH4 emissions and soil and tree seques-
tration rates of wetlands impacted by sediment diversions. To address 
barriers preventing blue carbon project development adoption, 
user-friendly and publicly available wetland models need to be devel-
oped that are in sync with carbon market protocols to reduce uncertainty 
deductions and facilitate MRV. Ultimately, enhancing methods of MRV 
are key to ensuring the integrity and scalability of wetland carbon 
credits that maximize co-benefits to society. 
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